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ABSTRACT

A definition of “gotcha” is: “A misfeature of....a programming language...that tends to breed bugs
or mistakes because it is both enticingly easy to invoke and completely unexpected and/or
unreasonable in its outcome. A classic gotcha in C is the fact that ‘if (a=b) {code;}’ is
syntactically valid and sometimes even correct. It puts the value of b into a and then executes
code if a is non-zero. What the programmer probably meant was ‘if (a==b) {code;}’, which
executes code if a and b are equal.” (from http://www.hyperdictionary.com/computing/gotcha)

The Verilog and SystemVerilog standards define hundreds of subtle rules on how software tools
should interpret design and testbench code. These subtle rules are documented in the IEEE
Verilog and SystemVerilog Language Reference Manuals...all 1,500 plus pages! The goal of this
paper is to reveal many of the mysteries of Verilog and SystemVerilog, and help engineers
understand many of the important underlying rules of the Verilog and SystemVerilog languages.
Dozens of gotchas in the standards are explained, along with tips on how to avoid these gotchas.
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1.0 Introduction
A programming “gotcha” is a language feature, which, if misused, causes unexpected—and, in
hardware design, potentially disastrous—behavior. The classic example in the C language is
having an assignment within a conditional expression, such as:

if (a=b) /* GOTCHA! assigns b to a, then if a is non-zero sets match */
match = 1;

else 
match = 0;

Most likely, what the programmer intended to code is if (a==b) instead of if (a=b). The results
are very different! 

Why do programming languages allow engineers to make these stupid mistakes? In the case of
the Verilog and SystemVerilog languages, the primary reasons are:
• A syntax may be desirable in some contexts, but a gotcha if used incorrectly.
• An underlying philosophy of Verilog and SystemVerilog is that the language should allow

proving both what will work correctly in hardware, and what will not work in hardware. 
• Verilog and SystemVerilog provide some freedom in how the language is implemented. This is

necessary because tools such as simulation, synthesis and formal analysis work differently.
• Verilog and SystemVerilog simulation event scheduling allows tools to optimize order of

concurrent events differently, which can lead to race conditions in a poorly written model.
• Some tools are not 100% standards compliant. This is not a gotcha in the standards, but it is

still a source of gotchas when simulation or synthesis results are not what was expected.

The C example above, if (a=b), is an example of a syntax that is a gotcha in one context, but is
useful in a different context. The following example is similar, in that it contains an assignment
operation within a true/false conditional test. In this example, however, there is no gotcha. The
while loop repeatedly assigns the value of b to a and does some processing on a. The loop
continues to run until the value of a is 0;

while (a=b) { /* assign b to a; exit loop when a is 0 */
... 

}

Does this same C gotcha exist in Verilog and SystemVerilog? If you don’t know the answer, then
you need to read this paper! (You will find the answer in Section 6.1.)
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2.0 Declaration gotchas

2.1 Case sensitivity

Gotcha: Verilog is a case-sensitive language, whereas VHDL is a case-insensitive language. 

Verilog is a case sensitive language, meaning that lowercase letters and uppercase letters are
perceived as different in identifiers and in keywords.An identifier in Verilog and SystemVerilog is
the user-specified name of some object, such as the name of a module, the name of a wire, the
name of a variable, or the name of a function. This case sensitivity is often a gotcha to engineers
learning Verilog, especially those migrating from a case insensitive language such as VHDL.
Even experienced engineers occasionally get caught making a case sensitivity error. 

The gotcha of a case sensitive language is when an identifier is sometimes inadvertently spelled
with all lowercase characters, and in another place with some or all uppercase characters. For
example:

enum logic [1:0] {WAIT, LOAD, READY} State, NextState; // mixed case names

always_comb begin
case (state)

WAIT: NextState = L0AD;
...

endcase
end

There are three gotchas in the preceding example. 

One gotcha is that the enumerated variable State is declared using a mix of uppercase and
lowercase characters. Later in the code, and, in a large design, possibly hundreds of lines after the
declaration, a signal called state is referenced. These identifiers read the same in English, but, to
a Verilog compiler, they are read as very different names.

A second gotcha is that the enumerated label LOAD is in all uppercase letters. But later in the code
an identifier called L0AD is referenced. Visually, these identifiers appear to be the same, but to a
Verilog compiler they are very different names. The difference is that the enumerated label
contains an uppercase letter “O”, pronounced “oh”, in the name, whereas the reference in the code
body contains the number “0”, or “zero” in the name.

The third gotcha in the example above is the enumerated label WAIT. While syntactically correct,
this is a poor choice for an identifier name because there is a Verilog keyword wait. A Verilog
compiler won’t get confused between the keyword wait and the identifier WAIT, but someone who
has to read or maintain the code could easily confuse wait and WAIT. (Several examples in this
paper use a state machine with a “WAITE” state. The identifier “WAITE” is purposely spelled with
the letter “E” on the end to avoid confusion with the Verilog keyword wait.)

How to avoid this gotcha: The best way to avoid this case-sensitive gotcha is to adopt good
naming conventions within a company, and then strictly enforce these guidelines. When modules
are instantiated, SystemVerilog provides two convenient shortcuts that also help enforce
following consistent naming conventions. The shortcuts are the .<name> and .* implicit port
connections. These shortcuts infer netlist connections, but only if the names within a design block
and the names within the netlist are consistent.
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2.2 Implicit net declarations

Gotcha: Mis-typed identifiers may infer an implicit net instead of a syntax error. 

The examples in Section 2.1, above, contained references to the undeclared identifiers, state and
L0AD. What does a compiler do when it encounters an undeclared identifier? The answer to this
question depends on the context in which the undeclared identifier is used.
• If an undeclared identifier is used on the right or left-hand side of a procedural assignment,

then a compilation or elaboration error occurs.
• If an undeclared identifier is used on the right-hand side of a continuous assignment, then a

compilation or elaboration error occurs.
• If an undeclared identifier is used on the left-hand side of a continuous assignment, then an

implicit net declaration is inferred, and no error or warning is reported. 
• If an undeclared identifier is used as a connection to an instance of a module, interface,

program, or primitive, then an implicit net is inferred, and no error or warning is reported. 

The last two rules above are gotchas, as is illustrated in the following example:
module bad_adder (input wire a, b, ci,

output wire sum, co);

wire n1, n2, n3;

xor g1 (n1, a, b);
xor g2 (sum, nl, ci); // GOTCHA!
and g3 (n2, a, b, c); // GOTCHA!
and g4 (n3, n1, ci);
or g5 (co, n2, n3);

endmodule

One gotcha in this example is the declaration of n1 (“en-one”) but the usage of nl (“en-ell”) in the
g2 primitive instance. Another gotcha is an extra identifier, c, in the second g3 primitive instance.
These typos are not syntax errors. Instead, they infer implicit nets in the design, causing
functional errors that must be detected and debugged. GOTCHA! 

This example comes from a debugging lab in Sutherland HDL’s Verilog training course (but
without the GOTCHA comments). It is surprising how difficult the two typos in the netlist can be
to find. Imagine how much more difficult a simple typo would be to find in a one-million gate
netlist with several layers of design hierarchy. Why does Verilog allow this gotcha? Because, like
many gotchas, the ability to have implicit data types automatically inferred can be useful, when
not abused. One of the benefits of implicit data types is that in a large, multi-million gate design
that has thousands of interconnecting wires, it is not necessary to explicitly declare every wire.

How to avoid this gotcha: There are two ways to avoid this implicit data type gotcha. Verilog
provides a ‘default_nettype none compiler directive. When this directive is set, implicit data
types are disabled, which will make any undeclared signal name a syntax error. A limitation of
this directive is that the benefits of implicit data types are also lost. Another limitation is that
compiler directives are not bound by design blocks, or even by source code files. If the
‘default_nettype none directive is turned on in one file, it can affect the compilation of other
files, which is yet another GOTCHA!. To avoid this gotcha, the directive ‘default_nettype
wire should be added at the end of each file where implicit nets have been turned off.
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‘default_nettype none // turn off implicit data types
module adder (input wire a, b, ci,

output wire sum, co);

wire n1, n2, n3;

xor g1 (n1, a, b);
xor g2 (sum, nl, ci); // ERROR! nl is not declared 
and g3 (n2, a, b, c); // ERROR! c is not declared 
and g4 (n3, n1, ci);
or g5 (co, n2, n3);

endmodule
‘default_nettype wire // turn implicit nets on again to avoid side-effects

SystemVerilog provides two convenient short cuts for connecting nets to module instances,
.<name> and .*. These shortcuts remove the repetition in Verilog named port connections. By
reducing the number of times a signal name must be typed, the possibility of typographical errors
is also reduced. The .<name> and .* shortcuts also require that all nets be explicitly declared. The
shortcuts will not infer an implicit data type due to a typo. Another advantage of these
SystemVerilog shortcuts is that they are local to the module in which they are used. The shortcuts
do not affect other design blocks, the way compiler directives can.

module adder (input wire a, b, ci,
output wire sum, co);

...
endmodule

module top;
wire a, b, ci;
wire s1, s2, s3, c1, c2, c3;

adder i1 (.a(a), .b(b), .ci(ci), .sum(s1), .co(c1) ); // Verilog style

adder i2 (.a, .b, .ci, .sum(s2), .co(c2) ); // SystemVerilog .name style

adder i3 (.*, .sum(s3), .co(c3) ); // SystemVerilog .* style
endmodule

2.3 Escaped identifiers in hierarchy paths

Gotcha: Escaped identifiers in a hierarchy path require embedded spaces in the path. 

An identifier in Verilog and SystemVerilog is the name of some object, such as the name of a
module, the name of a wire, the name of a variable, or the name of a function. The legal characters
in an identifier are alphabetic characters, numbers, underscore or dollar sign. All other characters,
such as +, -, (, ), [ and ], are illegal in an identifier name.

Verilog and SystemVerilog allow these illegal characters to be used in a name by escaping the
identifier. A name is escaped by preceding the name with a back slash ( \ ) and terminating the
name with a white space character. A white space character is a space, a tab, a return, a form feed,
or an end-of-file. Some examples of escaped identifiers are:

module \d-flop (output q, \q~ , input \d[0] ,clk, \rst- );
...

endmodule
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Note in the above example that a white space character must be used before the commas that
separate an escaped identifier from the next item in the list. A white space is also required
between the last escaped name, \reset-, and the closing parenthesis.

The gotcha is when an escaped identifier is used as part of a hierarchy path. The escaped identifier
must be terminated by a white space. That white space looks like it breaks the hierarchy path into
two identifiers, but the terminating white space is ignored, which, in effect, concatenates the two
names into one name. The following examples illustrate the use of white space after references to
escaped identifiers. Module chip uses named port connections to escaped port names identifiers.
The $display contains a relative hierarchy path that contains an escaped identifier.

module chip (output [7:0] q, input [7:0] d, input clk, rstN);

\d-flop \d-0 (.q(q[0]), .\q~ (), .\d[0] (d[0]), .clk(clk), .\rst- (rstN));
 

initial begin
$display(“d = %b”, \d-0.\d[0] ); // GOTCHA! missing white space

$display(“d = %b”, \d-0 .\d[0] ); // OK: white space in path
end // required; does not split

// path into two names
endmodule

How to avoid this gotcha: One could simply not used escaped names in a design, especially an
escaped name with square brackets in the name, as in the example above. Unfortunately, life is not
that simple. Not all identifiers are user-defined. Software tools, such as the DC synthesis
compiler, create tool-generated identifier names in the Verilog or SystemVerilog code. And, as
ugly as these tool-generated identifiers looks to users, these tools often put square brackets in
escaped identifiers. The gotcha of having to reference escaped identifiers using hierarchy paths is
one that cannot be completely avoided. Engineers need to know that having a space in a hierarchy
path involving escaped identifiers is not illegal. It may make the code harder to read, but it is the
way Verilog works.

2.4 Verification of dynamic data

Gotcha: Dynamically allocated variables have no hierarchy paths. 

Verilog has automatic tasks and functions, which dynamically allocate storage each time they are
called, and automatically free that storage when they exit. SystemVerilog adds many more types
of dynamic storage to Verilog, including classes for Object Oriented programming, dynamically
sized arrays, queues, automatic variables in static tasks and functions, and local variables in an
assertion. These dynamically allocated types are intended for—and are very important in—
modeling test programs using modern verification methodologies.

But, there is a gotcha with these new dynamic data types. Unlike other Verilog data types,
dynamic types cannot be referenced hierarchically. Hierarchically referencing nets and variables
in a design is a common verification technique. It allows the verification code to evaluate, and
possibly stimulate, the logic deep down in the hierarchy of a design, without having to pull those
internal signals up to the testbench through extra, verification only, module ports.

non-escaped brackets (bit-select)escaped brackets (part of name)
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The reason that dynamic data cannot be referenced hierarchically is that hierarchy paths are static
in nature, whereas a dynamic variable or class object comes and goes during simulation. This
gotcha places a burden on the verification engineer. Before using a hierarchical to reference a
variable, the verification engineer must first examine whether or not the variable is static or
dynamic. Since SystemVerilog adds so many types of dynamic storage, it can be very difficult to
determine when something can be referenced hierarchically, and when it cannot.

How to avoid this gotcha: This gotcha cannot be avoided, but can be minimized. A good coding
guideline is to only use dynamic storage in the testbench and for automatic tasks and functions
declared in $unit, packages and interfaces. In this way, the test programs will be able to
hierarchically access most design data. It is also helpful to establish and use naming conventions
that make dynamic variables obvious when reading the source code.

2.5 Variables declared in unnamed blocks

Gotcha: Variables declared in an unnamed scope have no hierarchy paths. 

SystemVerilog allows local variables to be declared in unnamed scopes, including:
• Within the definition of for loops. 
• Unnamed begin...end and fork...join blocks. 
• Unnamed loops in generate blocks

These local variables have two primary advantages. First, variables can be declared where they
are needed, instead of in the midst of writing code, having to jump back to the beginning of a
module to add a new declaration. This allows engineers to keep their train of thought as they are
developing code. Second, local variables prevent the inadvertent Verilog gotcha of having
multiple initial or always procedural blocks write to the same variable (this gotcha is discussed
in Section 2.8). 

There is a gotcha with locally defined variables. Variables in a for loop declaration, in an
unnamed block, or in an unnamed generate scope, cannot be referenced hierarchically, because
there is no named scope to reference in the hierarchy path. Once again, the verification engineer
has the burden of determining which data can be referenced hierarchically, and which data cannot.

How to avoid this gotcha: Declare local variables in named begin...end or fork...join blocks, so
that they can be referenced hierarchically for verification purposes. The use of variables declared
as part of a for loop definition should not be a problem, as these loop control variables seldom
need to be accessed from the verification test programs.

2.6 Hierarchical references to declarations imported from packages

Gotcha: Imported identifiers cannot be referenced hierarchically. 

Hierarchy paths are a verification construct, used to access the declaration of an object in the
scope in which that object is declared. When package items are imported into a module, interface
or test program, these items are not locally defined within that module, interface or test program.
This means these imported items cannot be referenced hierarchically. In the example below, the
hierarchy path to chip.RESET is an error, because ERROR was not declared in module chip:
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package chip_types;
typedef enum logic [1:0] {RESET, WAITE, LOAD, READY} states_t;

endpackage

module top;
chip chip (...); // instance of design that uses the chip_types package
test test (...); // instance of test program

endmodule

program test (...);
...
$display (“the value of RESET is %b”, top.chip.RESET); // GOTCHA!

How to avoid this gotcha: The correct way to reference package items is using the scope
resolution operator ( :: ) instead of hierarchy paths. For example:

$display (“the value of RESET is %b”, chip_types::RESET);

2.7 Variables with no hierarchy path are not dumped to VCD files

Gotcha: Changes on dynamic variables and variables in unnamed scopes are not saved in VCD
files. 

Another gotcha with dynamically and locally defined storage is that the IEEE Verilog and
SystemVerilog standards explicitly state that this type of storage is not dumped out to a Value
Change Dump (VCD) file. VCD files are used as an input to waveform displays and other design
analysis tools, in order to analyze what activity has, or has not, occurred during simulation. As a
standard, VCD files are portable, and can be used with many different third party and in-house
tools. However, changes on dynamically allocated and local data are not dumped to VCD files,
which means waveform displays and design analysis tools that read in VCD files do not see all the
activity that took place in simulation.

How to avoid this gotcha: There is no work around for this VCD limitation. It should be noted,
though, that proprietary dump files that are part of most waveform display tools might not have
this limitation.

2.8 Shared variables in modules 

Gotcha: Variables written to by multiple processes create shared resource conflicts. 

Syntactically, Verilog variables declared at the module level can be read or written by any number
of initial or always procedural blocks within the module. Reading a variable from multiple
procedural blocks is fine, and provides a way for parallel processes to pass values between
themselves. But, there is a gotcha when two or more procedural blocks write to the same variable.
The effect is that the same piece of storage is shared by all the procedural block. Since these
procedural blocks run concurrently, it is possible—and likely—that the code within the blocks
will collide, and interfere with each other’s functionality. 

The following example shows a common—and perhaps not obvious in large models—Verilog
gotcha, where the variable i is shared by two concurrent always procedural blocks.
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module chip (...);
integer i; // for-loop control variable

always @(a or b) begin 
for (i=0; i<15; i=i+1) // this process uses i

...
end 

always @(c or d) begin 
for (i=0; i<15; i=i+1) // this process also uses i

...
end 

endmodule 

How to avoid this gotcha: The answer on how to avoid this gotcha depends on whether the code is
for a synthesizable RTL model or for verification. For RTL models, the preferred way to avoid
this gotcha is to use SystemVerilog’s always_comb, always_ff, always_comb, and continuous
assign to a variable. These processes make it a syntax error if a variable is written to by multiple
processes. If the code is for verification or an abstract bus functional model, the way to avoid this
gotcha is to use process synchronization (flags, event triggers, semaphores or mailboxes) so that
concurrent processes are not writing to the same variable at the same time.

For the example above, there is another way to avoid this shared variable gotcha. SystemVerilog
allows local variables to be declared as part of a for loop definition. This solution has its own
gotcha, however, as was discussed in Section 2.5.

2.9 Shared variables in interfaces, packages, and $unit

Gotcha: Interface, package and global variables written to by multiple design and/or verification
blocks create shared resource conflicts. 

SystemVerilog compounds the Verilog shared variable gotcha described in Section 2.8 by
providing more places where shared variables can be declared (or obfuscated). In SystemVerilog,
variables can be declared in external spaces outside of a module. These external declaration
spaces are user-defined packages, $unit (a built-in package), and interfaces. These externally
declared variables can then be referenced by multiple modules, creating a shared variable. Any
initial and always procedural blocks that write to these shared variables will likely interfere
with each other. These procedural blocks can be in different design and verification blocks, which
are generally in different files. This can make it very difficult to find and debug shared variable
conflicts.

How to avoid this gotcha: For RTL models, SystemVerilog’s always_comb, always_ff,
always_comb, and continuous assign to variables, should be used. These processes make it a
syntax error if a variable is written to by multiple processes, even when these processes are in
different modules. For verification, or abstract bus functional models, this gotcha can be avoided
through the use of process synchronization (flags, event triggers, semaphores or mailboxes).

2.10 Shared variables in tasks and functions 

Gotcha: Variables in tasks and functions contained in interface, package and global variables
create shared resource conflicts. 
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SystemVerilog allows tasks and functions to be defined in $unit, packages, and interfaces. These
tasks and functions can then be called from multiple modules. Any static storage in these tasks
and functions is shared by all places from which the task or function is called.

How to avoid this gotcha: Declare tasks and functions in $unit, packages, or interfaces as
automatic, with no static storage within the task or function. Each call to an automatic task or
function will allocate unique storage for that call, instead of sharing the task/function storage. An
exception to this guideline is a task or function within an interface that is only called from within
the interface.

2.11 Importing enumerated types from packages

Gotcha: Importing an enumerated type does not import the enumerated labels. 

Enumerated type definitions defined in a package can be explicitly imported into a design or
verification block. For example:

package chip_types;
typedef enum logic [1:0] {RESET, WAITE, LOAD, READY} states_t;

endpackage

module chip (...);
import chip_types::states_t; // explicit import of states_t type
states_t state, next_state;

always_ff @(posedge clock, posedge reset)
if (reset) state <= RESET; // GOTCHA: RESET has not been imported
else state <= next_state;

...
endmodule 

How to avoid this gotcha: This gotcha can usually be avoided by wildcard importing the package.
In this way, both the enumerated type definition and the enumerated labels are imported. 

module chip (...);
import chip_types::*; // wildcard import of package declarations

However, wildcard imports have a gotcha if multiple packages are used in a design block, as
discussed in Section 2.12, which follows. 

2.12 Importing from multiple packages

Gotcha: Wildcard imports from multiple packages can cause name collisions. 

Large designs, and designs that use IP models, will likely divide declarations into multiple
packages. A common modeling style is to wildcard import these packages into a design block, or
into the $unit global declaration space. Wildcard imports are convenient, as they can save
considerable typing over explicitly importing each item from each package. However, wildcard
imports of multiple packages can lead to a gotcha, as illustrated in the following example:

package bus1_types;
parameter SIZE = 32;
...

endpackage
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package bus2_types;
parameter SIZE = 64;
...

endpackage

module chip (...);
import bus1_types::*; // wildcard import of a package 
import bus2_types::*; // wildcard import of another package 

logic [SIZE-1:0] a; // GOTCHA! SIZE has more than one definition
...

How to avoid this gotcha: The gotcha with wildcard package imports occurs when there are some
identifiers common to more than one package. In this case, at most only one of the packages with
duplicate identifiers can be wildcard imported. Any references to a duplicate identifier in another
package must be explicitly referenced, using its package name each place the identifier is
referenced. For example:

import bus1_types::*; // wildcard import of a package

logic [bus2_types::SIZE-1:0] a; // explicit reference to different package

3.0 Two-state gotchas

3.1 Resetting 2-state models

Gotcha: Reset fails to occur the first time. 

One of the features of SystemVerilog is 2-state data types, which, in theory, can be advantageous
in simulation. However, 2-state types also have some simulation gotchas. One of these gotchas is
that at the beginning of simulation (time zero), the value of each variable is a default uninitialized
value, which is X for 4-state variables and zero for 2-state variables. The uninitialized 2-state
value of zero can lead to a reset gotcha. Consider the following code:

module chip_tb;
bit rst_n, clk; // 2-state types for reset and clock

initial begin // clock oscillator
clk <= 0;
forever #5ns clk = ~clk;

end

initial begin // reset stimulus (active low reset)
rst_n <= 0; // turn on reset at time zero
#3ns rst_n = 1; // turn off reset after 2 nanoseconds

end

chip u1(.rst_n, .clk, ...); // instance of design under test

endmodule: chip_tb

module chip (input rst_n, clk, ...);

enum {WAITE, LOAD, STORE} State, NextState; // 2-state enum. variables

always_ff @(posedge clk, negedge rst_n) // active-low async reset
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if (!rst_n) State <= WAITE;
else State <= NextState;

...
endmodule: chip

In the example above, the always_ff flip-flop in module chip is supposed to reset on a negative
edge of rst_n. The testbench sets rst_n to zero at the beginning of simulation, and holds it low
for 3 nanoseconds. However, in the testbench, rst_n is a 2-state type, which begins simulation
with a value of zero. Setting rst_n to zero does not change its value, and therefore does not cause
a negative edge on rst_n. Since the testbench does not cause a negative edge on rst_n, the
always_ff sensitivity list for the flip-flop in module chip does not trigger, and the flip-flop does
not reset asynchronously. If rst_n were held low at least one clock cycle, the flip-flop would
reset synchronously when clock occurred. In this example, though, the test stimulus does not hold
rst_n low a full clock cycle, and therefore the reset is completely missed. GOTCHA!

How to avoid this gotcha: This gotcha can be avoided in a number of ways. One way is to
initialize the 2-state reset signal to the non reset value with a blocking assignment, and then to the
reset value with a nonblocking assignment: This will trigger the always_ff blocks waiting for a
negative edge of reset. Additionally, the nonblocking assignment will ensure that all the
always_ff blocks are active before the transition to zero occurs.

initial begin
rst_n = 1; // initialize to inactive value
rst_n <= 0; // set reset to active value using nonblocking assign
#3ns rst_n = 1;
...

A second way to avoid this gotcha is to ensure that the reset is held longer then a clock period,
thus using the clock to trigger the always_ff block. This is not a recommended approach, due to
reset acting like a synchronous reset, rather than an asynchronous reset, which means that the
RTL simulation does not match the gate-level simulation or the design intent.

A third way to fix this gotcha is to use 4-state types instead of 2-state types for active-low signals.
4-state variable types will begin simulation with a value of X. Assigning a 4-state type a value of
zero, even at simulation time zero, will cause an X to zero transition, which is a negative edge. 

Note: VCS version 2006.06 does not fully adhere to the IEEE SystemVerilog standard for 2-state
types. The standard says that 2-state types should begin simulation with a value of zero. In VCS,
2-state variable types automatically transition to zero sometime during simulation time zero. This
will cause a negative edge transition at simulation time zero, which might, depending on event
ordering, trigger the design procedural blocks that are looking for a negative edge transition. This
tool-specific, non-standard behavior can hide this 2-state reset gotcha. Engineers should not rely
on this tool-specific behavior as a solution to the gotcha. It is dependent on event ordering, and, at
some future time, VCS could implement the 2-state behavior as it is specified in the standard.

3.2 Locked state machines 

Gotcha: 2-state state machines can lock up in the start-up state. 

By default, enumerated types are 2-state types, and the default value of the first label in the
enumerated list is zero. Functional logic based on 2-state enumerated data types can have gotchas.
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Consider the following code:
module controller (output logic read, write,

input instr_t instruction,
input wire clock, resetN);

enum {WAITE, LOAD, STORE} State, NextState; // 2-state enum. variables

always_ff @(posedge clock, negedge resetN) // state sequencer
if (!resetN) State <= WAITE;
else State <= NextState;

always @(State) begin // next state decoder
unique case (State)

WAITE: NextState = LOAD;
LOAD: NextState = STORE;
STORE: NextState = WAITE;

endcase 
end
... 

endmodule 

In simulation, this example will lock up in the WAITE state. Applying reset, whether 2-state or 4-
state, will not get the state machine out of this lock up. This is because State and NextState are
2-state enumerated variables. 2-state types begin simulation with a value of zero, which is the
value of WAITE in the enumerated list. When the always_ff state sequencer is reset, it will assign
State the value of WAITE, which is the same value as the current value of State, and thus does
not cause a transition on State. Since State does not change, the always @(State)
combinational procedural block does not trigger. Since the combinational block is not entered,
NextState is not updated to a new value, and remains its initial value of WAITE. On a positive
edge of clock, State is assigned the value of NextState, but, since the two variables have the
same value of WAITE, State does not change, and, once again, the always @(State)
combinational block is not triggered and NextState is not updated. The simulation is stuck in the
start-up state no matter how many clock cycles are run, and no matter how many times the state
machine is reset. GOTCHA!

How to avoid this gotcha: The best way to avoid this gotcha is to use the SystemVerilog
always_comb for the combinational block in this code. Unlike the Verilog always procedural
block, an always_comb procedural block will automatically execute once at time zero, even if the
sensitivity list was not triggered. When the always_comb block executes, NextState will be
assigned the correct value of LOAD. Then, after reset is removed, the state machine will function
correctly, and not be locked in a WAITE state.

A second method to avoid this gotcha is to declare the State and NextState enumerated
variables as 4-state types, as follows:

enum logic [1:0] {WAITE, LOAD, STORE} State, NextState; // 4-state 

By doing this, State and NextState will begin simulation with the value of X. When State is
assigned WAITE during reset, the always @(State) will trigger, setting NextState to LOAD. 

A third way to fix this 2-state lock-up gotcha is to explicitly assign values to the WAITE, LOAD and
READY that are different than the uninitialized value of the enumerated variables. For example:
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enum bit [2:0] {WAITE = 3’b001,
LOAD = 3’b010,
STORE = 3’b100} State, NextState; // 2-state variables

In this example, State and NextState are 2-state types, which begin simulation with an
uninitialized value of zero. This value does not match any of the values in the enumerated list.
When reset is applied, State will be assigned WAITE. The change on State will trigger the
always @(State) combinational block, which will update NextState to LOAD, preventing the
lock up gotcha.

3.3 Hidden design problems

Gotcha: Design errors might not propagate through 2-state logic. 

An important gotcha to be aware of when modeling with 2-state data types, whether at the RTL
level or at the verification level, is the fact that 2-state types begin simulation with a value of zero
instead of X. It is common for a value of zero to also be the reset value of registers within a
design. Consider the following example:

bit [31:0] data_reg; // 2-state variable

always_ff @(posedge clock, negedge resetN) // data register
if (!resetN) data_reg <= 0; // reset to zero
else data_reg <= data_in;

The initial value of data_reg is zero. This is also the value to which data_reg is reset. This
means that, if for some reason the design fails to generate a reset, it will not be obvious by looking
at the value of data_reg that there was a failure in the design logic.

Another way in which 2-state logic can hide design errors is when an operation returns a logic X,
as illustrated below:

module comparator (output bit eq, // 2-state output 
input bit a, b); // 2-state inputs 

assign eq = (a == b);

endmodule

In the example above, the gotcha is the 2-state inputs. What will happen if there is a design error,
and either the a or b input is left unconnected? With 4-state values, the unconnected input would
float at high-impedance, and the (a == b) operation will return a logic X—an obvious design
failure. With 2-state inputs, however, there is no high-impedance to represent a floating input. The
design error will result in zero on the input, and an output of one or zero. The design failure has
been hidden, and did not propagate to an obvious incorrect result. GOTCHA! 

What if the inputs and outputs in the preceding example were 4-state, but the output was
connected to another design block, perhaps an IP model written by a third party provider, that was
modeled using 2-state types? In this case, the comparator module would output a logic X, due the
unconnected input design failure, but that X would be converted to a zero as it propagates into the
2-state model, once again hiding the design problem. GOTCHA! 

How to avoid this gotcha: The best way to avoid this gotcha is to use 4-state types in all design
blocks. 4-state variables begin simulation with a value of X, making it very obvious if reset did
SNUG Boston 2006 15 Standard Gotchas in Verilog and SystemVerilog



not occur. Should an operation or programming statement produce a logic X, the use of 4-state
types will propagate the design error instead of hiding it. In addition to using 4-state types,
SystemVerilog assertions can be used to verify that inputs to each design block are valid.
SystemVerilog functional coverage can also be used to verify that reset occurs during simulation.

3.4 Out-of-bounds indication lost

Gotcha: Out-of-bounds errors might not propagate through 2-state logic. 

Another type of failure that can be hidden by 2-state types is when an out-of-bounds address is
read from a memory device. An example where this can occur is:

module RAM #(parameter SIZE = 1024, A_WIDTH = 16, D_WIDTH = 31)
(output logic [D_WIDTH-1:0] data_out,
input wire [D_WIDTH-1:0] data_in,
input wire [A_WIDTH-1:0] addr, // 16 bit address bus
input wire read, write);

bit [D_WIDTH-1:0] mem_array [0:SIZE-1]; // only needs 10 bit index

assign data_out = read? mem_array[addr] : ’z; // read logic
...

endmodule

In this example, the address bus is wider than is required to access all addresses of mem_array. If
a 4-state array is accessed using an address that does not exist, a logic X is returned. But, when a
2-state array is accessed using an address that does not exist, a value of zero is returned. Since a
value of zero could be a valid value, the out-of-bounds read error has been hidden. GOTCHA!

The example above is an obvious design error, but is also one that could easily be inadvertently
coded. The same error is less obvious when the defaults of the memory size and address bus
parameters are correct, but an error is made when redefining the parameter values for an instance
of the RAM. GOTCHA, again! 

How to avoid this gotcha: One way to avoid this gotcha is to use 4-state types for arrays.
However, a 4-state array requires twice the amount of simulation storage as a 2-state array. It can
be advantageous to use 2-state arrays to model large memories. Another way to avoid this gotcha
is to use SystemVerilog assertions to verify that the redefined values of parameters cannot result
in an out-of-bounds access.

4.0 Literal number gotchas
There are several gotchas associated with defining literal integer numbers in Verilog and
SystemVerilog. There are actually two different sets of rules involving literal integers: one that
defines the generation of an integer number, and another for assigning the number. Many
engineers have only a vague understanding of these two sets of rules, and often confuse them with
each other. This section will discuss the gotchas on the generation a literal integer. Section 4.4
discusses the issues regarding the assignment of integers. 

Review of literal integer syntax. Literal integers can be specified as a simple decimal integer
(e.g. 5) or as a based integer (e.g.’h5). A based literal integer is specified using the following
syntax:
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<size>’s<base><value>

Where:
• <size> is optional. If given, it specifies the total number of bits represented by the literal

value. If not given, the default size is 32 bits (the Verilog standard says “at least” 32 bits, but
all implementations the authors are aware of use exactly 32 bits).

• s is optional. If given, it specifies that the literal integer should be treated as a 2’s
complemented signed value. If not given, the default is unsigned.

• <base> is required, and specifies whether the value is in binary, octal, decimal, or hex.
• <value> is required, and specifies the literal integer value.

4.1 Signed versus unsigned literal integers

Gotcha: Some literal integers default to signed; other literal integers default to unsigned. 

A simple literal integer (e.g. 5) defaults to a signed value, and cannot be specified as unsigned. A
based literal integer (e.g. ’h5) defaults to an unsigned value, unless explicitly specified as signed
(e.g. ’sh5). The s specifier was added as part of the Verilog-2001 standard to allow the
specification of sized, signed literal values. 

The difference in the default signed-ness of a value can catch engineers by surprise. Signed-ness
of a value affects several types of operations. Unexpected operation results will occur if an
engineer forgets—or is not aware of—the different default signed-ness of a simple literal integer
versus a based literal integer number. 

Are the following two signed counter statements the same? (Of course not, or we wouldn’t have
included this example in the paper!)

byte in; // signed 8-bit variables
int out1, out2; // signed 32-bit variables

initial begin
in = -5;
out1 = in + 1; // OK: -5 + 1 = -4 (literal 1 is signed)

out2 = in + 1'b1; // GOTCHA: -5 + 1'b1 = 252 (literal 1’b1 is unsigned)

end

How to avoid this gotcha: The difference between adding 1 and 1’b1 is that the literal integer 1 is
a signed value, whereas the literal integer 1’b1 is an unsigned value. This difference affects how
the ADD operation is performed. Signed arithmetic is discussed in more detail in Section 5.3.

4.2 Default base of literal integers

Gotcha: Literal integers have a default base that might not be what is intended. 

A simple literal integer (e.g. 5) defaults to a decimal base. To use a binary, octal or hex value, a
based-literal number must be specified (e.g. ’h5). The base options are represented using b, o, d,
or h for binary, octal, decimal and hex, respectively. The base specifier can be either lower case or
upper case (i.e. ‘h5 and ‘H5 are the same). 
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The following example of a 4-to-1 multiplexer illustrates a common gotcha when an engineer
forgets—or is not aware—that a simple integer number is a decimal value:

logic [1:0] select; // 2-bit vector

always_comb begin
case (select) // intent is for a 4-to-1 MUX behavior

00: y = a;
01: y = b;
10: y = c; // GOTCHA! This branch is never selected
11: y = d; // GOTCHA! This branch is never selected

endcase
end

This gotcha fits nicely with the well known joke that only engineers laugh at: “There are 10 types
of people in the world, those that know binary, and those that don’t”. The example above may
look reasonable, and it is syntactically correct. But, since the default base of a simple integer is
decimal, the values “10” and “11” are ten and eleven, respectively. The size of the values is not
specified, and so defaults to 32-bits wide. The 2-bit select signal will be zero-extended to 32-
bits wide, and then compared to zero, one, ten and eleven. The only values of select that will
ever match are a and b, which extend to 32-bit 00...00 and 00...01, respectively. The extended
value of select will never match the decimal “10” and “11”. Therefore, the c and d inputs of the
multiplexer will never be selected. Since this is not a syntax error, the problem shows up in
simulation as a functional failure which can be difficult to detect and debug. GOTCHA.

How to avoid this gotcha: An easy way to avoid this gotcha—or more correctly, to detect this
gotcha—is to use the SystemVerilog unique modifier to the case statement, as in:

unique case (select) // intent is for a 4-to-1 MUX behavior

The unique modifier reports an error if two or more case select items are true at the same time, or
if no case select items are true. The example above becomes a simulation error, rather than a
functional bug in the code. 

Code coverage utilities and/or SystemVerilog functional coverage can also be used to detect that
some branches of the case statement are not being executed. Also, some EDA tools, such as
LEDA and DC, will warn about a mismatch in the size of select and the literal integer values to
which it is compared. 

4.3 Size mismatch in literal integers

Gotcha: Too small a size truncates most-significant bits; too large a size left-extends
with...something. 

Size smaller than value gotcha. Verilog rules state that if the bit size specified is fewer bits than
the value, then, no matter what, the left-most bits of the value are truncated. This can be a gotcha
when the value is signed, because the sign bit will be truncated as well. This can significantly
affect the result of signed operations! In the following example, a negative 15 (8-bit F1 hex) is
truncated to 2-bits wide, becoming a positive 1.

-2’sd15; // 11110001 is truncated to 01

How to avoid this gotcha: The way to avoid this gotcha is to be sure that the bit size specified is at
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least as wide as the size of the value, especially when using signed values. Some tools, such as
rule checking programs like LEDA, will detect a size versus value mismatch. Unfortunately, these
tools will also report size mismatches when using unsigned values, where a mismatch may not be
a problem, and may even be useful.

Size greater than value gotcha. Verilog rules state that when the bit size specified is more bits
than the value, then the value will be expanded to the size by left-extending the value. The fill
value used to left extend is based on the most significant specified bit of the value, as follows:
• If the most significant bit of the value is a 0 or a 1, then the value is left-extended zeros.
• If the most significant bit is an X, then the value is left-extended Xs.
• If the most significant bit is a Z, then the value is left-extended Zs.

This left extension can be very useful. For example, it is not necessary to specify the value of each
and every bit of a vector to reset the vector to zero or to set the vector to high impedance.

64’h0; // fills all 64 bits with 0
64’bZ; // fills all 64 bits with Z

A surprising gotcha can occur when the bit-size is larger than the value, and the value is signed.
The expansion rules above do not sign-extend a signed value. Even if the number is specified to
be signed, and the most significant bit is a 1, the value will still be extended by 0’s. For example: 

logic [11:0] a, b, c;

initial begin
a = 12’h3c; // unsigned value 00111100 expands to 000000111100
b = 12’sh3c; // signed value 00111100 expands to 000000111100
c = 12’so74; // signed value 111100 expands to 000000111100
if (a == b) ...; // evaluates as true
if (a == c) ...; // evaluates as true

end

In this example, a hex 3c is an 8-bit value, which does not set its most-significant bit. When the
value is expanded to the 12-bit size, the expansion zero-extends, regardless of whether the value
is signed or unsigned. This is as expected. 

The octal value 73 is the same bit pattern as a hex 3c, but is a 6-bit value with its most-significant
bit set. But, the expansion to the 12 bit size still zero-extends, rather than sign-extends. If sign
extension was expected, then GOTCHA!.

How to avoid this gotcha: The subtlety in the preceding example is that the sign bit is not the
most-significant bit of the value. It is the most-significant bit of the specified size. Thus, to
specify a negative value in the examples above, the value must explicitly set bit 12 of the literal
integer.

12'h805 // expands to 100000000101, which is 2053 decimal 
12'sh805 // expands to 100000000101, which is -2043 decimal
12'shFFB // expands to 111111111011, which is -5 decimal
-12'sh5 // expands to 111111111011, which is -5 decimal

Unspecified size. If the size of a literal integer is not specified, then the bit size of the literal
number defaults to 32 bits. This default size can be a gotcha when the <value> is not 32 bits, as
discussed in the preceding paragraphs. 
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4.4 Literal number size mismatch in assignments

Gotcha: A size mismatch in literal numbers follows different rules than a size mismatch in
assignment statements. 

Once a literal integer has been created and expanded via the rules discussed in Section 4.3, the
operator rules are then applied. 

Note: This section discusses assignment of literal value gotchas (e.g. a = 5;) Section 5 discusses
assignment rules and gotchas when there are operators on the right-hand side of the assignment.

The assignment operation rules for assigning literal values are: 
• When the left-hand side expression of an assignment statement is fewer bits than the right-

hand side literal value, then the most significant bits of the right-hand side value are truncated.
• When the left-hand side expression of an assignment statement is more bits than the right-hand

side literal value, ...
• If the right-hand side literal value is unsigned, it will be left-extended with zeros.
• If the right-hand side literal value is signed, it will be left-extended using sign extension.
• Exceptions: If the right-hand side is an unsized high-impedance literal value (e.g.: ’bz) or

unsized unknown (e.g.: ’bx), the value will left-extend with Z or X, respectively, regardless
of whether signed or unsigned.

These rules might seem, at first glance, to be the same rules discussed in Section 4.3, above, when
a literal integer size does not match the literal integer value. There is a subtle, but important,
difference in the rules, however. The difference is that literal value expansion does not sign-
extend, but an assignment statement does sign-extend.

And now the gotcha. Sign extension of the right-hand side only occurs if the expression on the
right-hand side is signed. The signed-ness of the left-hand side expression does not affect whether
or not sign extension will occur. Consider the following examples:

logic [3:0] a; // unsigned 4-bit variables
logic signed [3:0] b; // signed 4-bit variables
logic [7:0] u; // unsigned 8-bit variables
logic signed [7:0] s; // signed 8-bit variables

u = 4’hC; // 1100 (right-hand side) is zero-extended to 00001100
s = 4’hC; // 1100 (right-hand side) is zero-extended to 00001100

// even though s is a signed variable; GOTCHA

u = 4’shC; // 1100 (right-hand side) is sign-extended to 11111100
// even though u is an unsigned variable; GOTCHA

s = 4’shC; // 1100 (right-hand side) is sign-extended to 11111100

a = 4’hC;
u = a; // 1100 (right-hand side) is zero-extended to 00001100
s = a; // 1100 (right-hand side) is zero-extended to 00001100

// even though s is a signed variable; GOTCHA

b = 4’hC;
u = b; // 1100 (right-hand side) is sign-extended to 11111100

// even though u is an unsigned variable; GOTCHA
s = b; // 1100 (right-hand side) is sign-extended to 11111100
SNUG Boston 2006 20 Standard Gotchas in Verilog and SystemVerilog



These simple examples illustrate two types of gotchas:
• Assigning to a signed variable does not cause sign extension. Sign extension only occurs if the

right-hand side expression is signed.
• Assigning to an unsigned variable can have sign extension. Sign extension occurs if the right-

hand side expression is signed.

In other words, it is the right-hand side of an assignment that determines if sign extension will
occur. The signed-ness of the left-hand side has no bearing on sign extension. 

These same assignment expansion rules apply when operations are performed on the right-hand
side of an assignment. However, whether zero extension or sign extension will occur also depends
on the type of operation.. These operation rules are covered in Section 5.3.

4.5 Literal number Z and X extension backward compatibility 

Gotcha: Verilog-2001 Z and X extension is not backward compatible with Verilog-1995. 

Verilog-1995 had a gotcha when assigning an unsized high-impedance value (’bz) to a bus that is
greater than 32 bits. The default size of an unsized number is 32 bits. The literal number
expansion rules state that the Z value will extend through those 32 bits (see Section 4.3). But, the
assignment extension rules state that this 32-bit value then zero-extends to the size of the left-
hand side of the assignment (see Section 4.4). Therefore, with Verilog-1995, only the lower 32
bits would be set to high-impedance, and the upper bits would be set to 0. To set the entire bus to
high-impedance requires explicitly specifying the number of high impedance bits. For example:

Verilog-1995:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;

data = ’bz; // fills with 64’h00000000zzzzzzzz
data = 64’bz; // fills with 64’hzzzzzzzzzzzzzzzz

The fill rules in Verilog-1995 make it difficult to write models that scale to new vector sizes.
Redefinable parameters can be used to scale vector widths, but the Verilog source code must still
be modified to alter the literal value widths used in assignment statements. (And yes, believe it or
not, there are still some companies primarily using Verilog-1995.) The example above applies
equally to assigning Xs to a vector.

How to avoid this gotcha: One solution to this gotcha (but not the best) came with Verilog-2001,
which changed the rule for assignment expansion of unsized Z and X literal integers. The unsized
value of Z or X will automatically expand to fill the full width of the vector on the left-hand side
of the assignment.

Verilog-2001:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;

data = ’bz; // fills with 64’hzzzzzzzzzzzzzzzz

The Verilog-2001 enhancement allows writing code that scales when vector sizes are redefined.
But, this solution is also a gotcha, because it is not backward compatible with Verilog-1995. If
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maintaining backward compatibility with Verilog-1995 is a requirement, then always specify the
exact size of literal Z and X values. 

How to avoid this gotcha: The best way to avoid these Z and X fill gotchas is to take advantage of
a new SystemVerilog literal number, as described in Section 4.6, which follows.

4.6 Filling vectors

Gotcha: Verilog does not have a literal value that fills all bits of a vector with ones. 

In Verilog-2001, assigning ’bx, ’bz, or 0 will fill a vector of any size with all bits set to X, Z or
zero, respectively. However, assigning ‘b1 is not orthogonal. It does not fill a vector with all bits
set to one.

Verilog-2001:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;

data = ’b0; // fills with 64’h0000000000000000
data = ’bz; // fills with 64’hzzzzzzzzzzzzzzzz
data = ’bx; // fills with 64’hxxxxxxxxxxxxxxxx
data = ’b1; // fills with 64’h0000000000000001; GOTCHA

In order to assign a vector of any size with all bits set to one, designers must learn clever coding
tricks involving various Verilog operators. These tricks are not discussed in this paper, because
there is a better way to avoid this gotcha...

How to avoid this gotcha: SystemVerilog comes to the rescue to fix this gotcha by defining a
consistent syntax for filling any size of variable with all ones, all zeros, all Xs or all Zs. This is
done by just assigning ’<value>.

SystemVerilog:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;

data = ’1; // fills with 64’hffffffffffffffff
data = ’0; // fills with 64’h0000000000000000
data = ’z; // fills with 64’hzzzzzzzzzzzzzzzz
data = ’x; // fills with 64’hxxxxxxxxxxxxxxxx

4.7 Passing real (floating point) numbers through ports

Gotcha: Verilog does not allow real numbers to be passed directly through ports. 

In Verilog, the outputs of a module can be either net or variable types, but the signals receiving
values from module instantiations are required to be of type net. Verilog also requires that input
ports of a module be net types. Verilog variables include the real type, which is a double-
precision floating point value, but there is no counterpart to a real variable for the net data types.
If outputs of a module can be variable types, but the receiving side must be a net type, how are
real values passed through module ports? 

The gotcha is that it is illegal in Verilog to pass real numbers through ports. A secret that many
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engineers don’t know, however, is that Verilog has a pair of built-in system functions that can be
used to convert real numbers to a format that can be passed through ports. The numbers are then
converted back to real in the receiving module. These functions are $realtobits and
$bitstoreal.

module top;
wire [63:0] net_real; // only net types used in netlist
real_out ro (.net_real_out(net_real));
real_in ri (.net_real_in(net_real));

endmodule 

module real_out(output wire [63:0] net_real_out); // output is net type
real r;
assign net_real_out = $realtobits(r); // must convert real to a 

// bit-vector to pass through
// module output port

...
endmodule

module real_in(input wire [63:0] net_real_in); // input is net type
real r;
always @(net_real_in)

r = $bitstoreal(net_real_in); // must use bit-vector on input
// port, then convert to real

...
endmodule 

How to avoid this gotcha: While Verilog does provide a solution for passing real numbers through
ports, the solution is not well known, and is awkward to use. SystemVerilog provides a much
more elegant way to avoid this gotcha. In SystemVerilog, real types can be passed directly
through ports SystemVerilog also allows both the sending and receiving side of ports to be real
variables. The example above can be coded much more simply in SystemVerilog.

module top;
real r; // variable types can be used in netlist
real_out ro (.r);
real_in ri (.r);

endmodule 

module real_out(output real r); // output is real variable type 
...

endmodule

module real_in(input real r); // input is real variable type 
...

endmodule 

4.8 Port connection rules

Gotcha: The size of a port and the size of the net or variable connected to it can be different. 

The Verilog standard states that module ports are treated as continuous assign statements that
continuously transfer values into, and out of, modules. This is not a gotcha that one can avoid, but
rather a rule that helps explain some gotchas relating to port connections. 
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In Verilog, the receiving side of an input or inout port can only be a net type. The transmitting
side of an output port can be either a net or a variable. When considering ports as continuous
assignment statements, it becomes easier to understand why the receiving sides of ports are
required to be net data type signals, and why the driver (or source) side of ports could be either net
or variable. The receiving side of a port is the same as the left hand side of a continuous assign
statement, and the driver or source side of a port is the same as the right hand side of a continuous
assign statement. In other words, the left hand side/right hand side rules for continuous
assignments apply directly to port assignments. 

With this in mind, consider the four scenarios regarding port size connections (three of which can
be gotchas if not well understood):
• The port size and the size of the signal driving the port are the same size 
• The signal driving the port has more bits than the port (a gotcha)
• The signal driving the port has fewer bits than the port (a gotcha)
• An input port is unconnected; there is no signal driving the port (a gotcha)

Applying continuous assignment size rules to ports gives the following effects for these four
scenarios:
1. If the size of the port and the size of the signal driving the port match, then the value passes

through the port with no change.
2. If the signal driving the port has more bits than the port’s receiving signal, then the upper bits

of the driving signal are truncated, including any sign bit.
3. If the signal driving the port has fewer bits than the port’s receiving signal, then the upper bits

are extended, following Verilog’s assignment rules:
• If the driving signal is unsigned, the upper bits are zero-extended to the size of the receiving

signal. 
• If the driving signal is signed, then the upper bits will be sign-extended.

4. If an input port is unconnected, the value for the receiving signal of the port will be the default
uninitialized value for its given data type. For the wire net type, the uninitialized value is Z.
For tri0 and tri1 net types, the uninitialized values are 0 and 1, respectively, with a pull-up
strength.

Most often, any mismatch in port connection sizes is a design error. But, it is not a syntax error. In
Verilog, an incorrect size declaration is very easy design error to make, especially when the
modules that make up a design are written by several different engineers, (and possibly even
come from outside sources). A simple typo in a netlist, or an incorrect parameter redefinition, can
also lead to port size mismatches. Typographical errors in a netlist can also result in some ports of
a module instance unintentionally left unconnected. 

Verilog’s rules for port connection mismatches are well defined, but the simulation results are a
gotcha! Trying to trace back to why some bits disappeared from a vector, or additional bits
suddenly appeared, can be difficult. And that assumes that verification detected that there is a
problem! The following example illustrates how values are extended or truncated when passed
through a port of a different size than the value.
SNUG Boston 2006 24 Standard Gotchas in Verilog and SystemVerilog



module top;
wire [3:0] data = 4'b1111; // decimal 15
wire [7:0] address = 8'b11111111; // decimal 255

block1 b1 (.data(data), // 4-bit wire connected to 8-bit port
.address(address)); // 8-bit wire connected to 4-bit port

// third port left unconnected
endmodule: top

module block1 (input [7:0] data,
input [3:0] address,
input [3:0] byte_en);

initial
#1 $display(“ data = %b \n address = %b \n byte_en = %b\n”,

data, address, byte_en);
endmodule: block1

The output from this code is:
data = 00001111
address = 1111
byte_en = zzzz

The example above shows how confusing unconnected or partially connected ports can be. The
value of data has mysteriously changed, gaining an extra four bits. The value of address
changed from 255 to 15 (decimal), and byte_en is high-impedance instead of a valid logic value.

Most simulators generate warnings when code like this is elaborated, but such warnings are not
required by the Verilog standard, and engineers are notorious for ignoring these warnings.

How to avoid this gotcha: SystemVerilog provides a great solution to this gotcha: implicit port
connections using either .<name> or .* module instantiations. When using the .<name> or the .*
module instantiation syntax, the driver and receiver port signals are required to be the same size.
If, for some reason, a driver/receiver signal pair size mismatch is desired, the port must be
explicitly connected. This makes it very obvious in the code that the mismatch was intended.

module top;
wire [7:0] data; 
wire [7:0] address; 

block1 b1 (.data, // implicit port connections
.address);

endmodule: top

module block1 (input [7:0] data,
input [3:0] address,
input [3:0] byte_en);

...
endmodule: block1

In this example, the size of the wire called data has been corrected to be 8-bits wide, which is the
same as the size of the data port in block1. The .<name> shortcut will infer that the wire called
data is connected to the port called data. However, there is still a typo in the declaration of the
wire called address. Instead of a port connection mismatch (a gotcha), an elaboration error will
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occur because the signal at the top level is a different size than the port in block1: The .<name>
will not infer connections that do not match in size.

The .<name> method will allow unconnected ports, such as the byte_en port in the example
above. Was this port left unconnected on purpose, or is it another typo in the netlist? To catch all
the size mismatches and unconnected ports, using the .* shortcut is the best solution. The .*
shortcut requires explicitly listing all unconnected ports and all the signals with different sizes.

module top;
wire [7:0] data; 
wire [7:0] address; 

block1 b1 (.*, // implicit port connection
.address(address[3:0]), // explicit connection due to mismatch
.byte_en() ); // explicit unconnected port

endmodule: top

module block1 (input [7:0] data,
input [3:0] address,
input [3:0] byte_en);

...
endmodule: block1

4.9 Back-driven input ports

Gotcha: Verilog allows input ports to be used as outputs. 

One of the surprising gotchas in Verilog is that a module input port can be used as an output. If a
designer mistakenly assigns a value to a signal declared as an input port, there will not be any
warnings or errors. Instead, Verilog simply treats the input port as if it were a bidirectional inout
port. The Verilog Language Reference Manual refers to this a port coercion. In this paper, we
refer to an input port being used as an output as a back-driven port.

The following example illustrates this surprising gotcha:
module top;

wire w1;
backdrive bd(.a(w1)); // instance of a module with a back-driven port

endmodule 

module backdrive(input wire a); // ‘a’ will be coerced to be an output
wire b;
assign a = b; // GOTCHA! the intent was to have b = a, not a = b;

endmodule

Even though signal a is an input to module backdrive, it can still be assigned a value within
backdrive. This has the effect of a having two drivers wired together. This is legal because, in
Verilog, ports are treated as continuous assignments. The code above is equivalent to:

module top;
wire w1;
wire a, b;
assign a = w1; // same as connecting ‘w1’ to input port ‘a’
assign a = b; // a second continuous assignment to ‘a’

endmodule
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How to avoid this gotcha: SystemVerilog provides an easy solution to this gotcha. With
SystemVerilog, input ports can be connected to variables, instead of the wire type. SystemVerilog
restricts variables to only allow a single source. This is different than a wire type, where multiple
drivers are permitted (whether intentional, or not). In the preceding example, if a had been
declared as a logic type instead of a wire type, the assignment of a = b would be a syntax error,
because it would represent a second source for a. The authors recommend that all module inputs
and outputs be declared as variable types, unless it is intended to have multiple drivers on the port
(e.g. a bidirectional data bus). 

5.0 Operator gotchas

5.1 Self-determined operations versus context-determined operations

Gotcha: Misunderstanding operator rules can lead to unexpected simulation results. 

What should happen if a 4-bit vector is ANDed with a 6-bit vector, and result is assigned to an 8-
bit vector? Are the results be different if one or both of the AND operands are signed or unsigned?
Does the result change if the vector to which the operation is assigned is signed or unsigned?

Verilog and SystemVerilog are “loosely typed” languages. Loosely typed does not mean there are
no data type rules. Rather, loosely typed means that the language has built-in rules for performing
operations on various data types, and for assigning one data type to another data type. The most
subtle of these rules is whether an operator is “self-determined” or “context-determined”. If an
engineer does not understand the difference between these two operation types, he or she may
find the result of the operation to be different than expected. GOTCHA! (Self-determined versus
context-determined operations also affect the gotchas described in Sections 5.2, 5.3 and 5.4,
which follow). 

A context-determined operator looks at the size and data types of the complete statement before
performing its operation. All operands in the statement are expanded to the largest vector size of
any operand before the operations are performed. Consider the following example:

logic [5:0] a = 6’b010101; // 6-bit vector
logic [3:0] b = 4’b1111; // 4-bit vector
logic [7:0] c; // 8’bit vector

c = a & b; // results in 8-bit 00000101

In this example, the context of the bitwise AND operation includes the vector sizes of a, b and c.
The largest vector size is 8 bits. Therefore, before doing the operation, the 4-bit vector and the 6-
bit vector are expanded to 8 bit vectors, as follows: 

Why were a and b left-extended with zeros? That question is answered in Section 5.2, which
discusses zero-extension and sign-extension in Verilog.

In context, the operation is:

010101 (6-bits)
& 1111 (4-bits)

c: ???????? (8-bits)

After expansion, the operation is:

00010101 (8-bits)
& 00001111 (8-bits)
00000101 (8-bits)

a:
b:

c:

a:
b:
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A self-determined operator is only affected by the data types of its operands. The context in
which the operation is performed does not affect the operation. For example, a unary AND
operation will AND all the bits of its operand together without changing the size of the operand. 

logic [5:0] a = 6’b010101; // 6-bit vector
logic [3:0] b = 4’b1111; // 4-bit vector
logic [7:0] c; // 8’bit vector

c = a & &b; // results in 8-bit 00000001

In this example, the unary AND of b is self-determined. The vector sizes of a and c have no
bearing on the unary AND of b. The result of ANDing the bits of 4’b1111 together is a 1’b1. 

If the self-determined operation is part of a compound expression, as in the example above, then
the result of the self-determined operation becomes part of the context for the rest of the
statement. Thus: 

What if &b had been context determined? In context, b would first be expanded to 8 bits wide,
becoming 00001111. The unary AND of this value is 1’b0, instead of 1’b1. The result of a & &b
would be 00000000, which would be the wrong answer. But this is not a gotcha, because the
unary AND operation is self-determined, and therefore gets the right answer.

How to avoid this gotcha: Verilog generally does the right thing. Verilog’s rules of self-
determined and context-determined operations behave the way hardware behaves (at least most of
the time). The gotcha is in not understanding how Verilog and SystemVerilog operators are
evaluated, and therefore expecting a different result. The only way to avoid the gotcha is proper
education on Verilog and SystemVerilog. Table 1, below, should help. This table lists the Verilog
and SystemVerilog operators, and whether they are self-determined or context-determined.

 

Table 1: Determination of Operand Size and Sign Extension1

Operator
Operand
Extension

Determined By
Notes

Assignment statements
= <= 

context
Both sides of assignment affect size extension.
Only right-hand side affects sign extension2.

Assignment operations
+= -= *= /= %= &= |= ^= 

context
Both sides of assignment affect size extension.
Left operand is part of the right-hand side assign-
ment context (e.g. a += b expands to a = a + b).

Assignment operations
**= <<= >>= <<<= >>>= 

see notes

Left operand is context-determined. Right operand 
is self-determined. Left operand is part of the 
right-hand side assignment context. (e.g. a <<= b 
expands to a = a << b)

In context, the operation is:

010101 (6-bits)
& 1 (1-bit result of &b)

c: ???????? (8-bits)

After expansion, the operation is:

00010101 (8-bits)
& 00000001 (8-bits)
00000101 (8-bits)

a:
&b:

c:

a:
&b:
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1 This table only reflects operations where the operands are vectors. There are also rules for when operands are real 
(floating point) numbers, unpacked structures, and unpacked arrays, which are not covered in this paper. 

2 An assignment in an expression can be on the right-hand side of another assignment (e.g. d = (a = b + 5) + c;). 
In this case, the left-hand side expression of the assignment-in-an-expression is part of the context of the right-hand 
side of the assignment statement (i.e. a in the example does not affect the sign context of b + 5, but does affect the 
sign context of the + c operation).

Additional note: If a context-determined operation is an operand to a self-determined operation, the context of the 
context-determined operation is limited to its operands, instead of the full statement. E.g., in d = a >> (b + c);, the 
context of the ADD operation is only b and c.

Conditional
?: see notes First operand (the condition) is self determined.

Second and third operands are context determined. 

Arithmetic
+ - * / %

context

Arithmetic Power
** 

see notes Left operand (base) is context-determined.
Right operand (exponent) is self-determined.

Increment and Decrement
++ --

self

Unary Reduction
~ & ~& | ~| ^ ~^ ^~

self Result is a self-determined, unsigned, 1-bit value.

Bitwise 
~ & | ^ ~^ ^~

context

Shift 
<< <<< >> >>>

see notes Left operand is context-determined.
Right operand (shift factor) is self-determined.

Unary Logical
!

self Result is a self-determined, unsigned, 1-bit value.

Binary Logical
&& ||

self Result is a self-determined, unsigned, 1-bit value.

Equality 
== != === !== ==? !=?

context Result is a self-determined, unsigned, 1-bit value.

Relational 
< <= > >=

context Result is a self-determined, unsigned, 1-bit value.

Concatenation 
{} {{}}

self Result is unsigned.

Bit and Part Select
[ ] [ : ] [ +: ] [ -: ]

self Result is unsigned.

Table 1: Determination of Operand Size and Sign Extension1 (Continued)

Operator
Operand
Extension

Determined By
Notes
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5.2 Operation size and sign extension in assignment statements

Gotcha: In an assignment statement, size extension context is dependent on both sides of the
assignment, whereas sign extension context is only dependent on one side of the assignment. 

Operation sign extension is controlled by the operands of the operator, and possibly the context in
which the operation is performed. A self-determined operator is only affected by the data types of
its operands. A context-determined operator is affected by the size and data types of all operands
in the full expression. Table 1 in section 5.1 lists which operators are self-determined and which
are context-determined.

Before a context-determined operation is evaluated, its operands are first expanded to the largest
vector width in the operation context. There are three steps involved in this operand expansion,
and these steps use different context rules! 

Step 1. Evaluate the size and sign that will result from all self-determined operations on the right-
hand and left-hand side of the assignment. This information will be used in the subsequent steps.

Step 2. Determine the largest vector size in the context. The context is the largest vector on both
the right-hand and left-hand side of assignment statements. 

Step 3. Expand all context-determined operands to the largest vector size by left-extending each
operand. The expansion will either zero-extend or sign-extend, based on the operation context, as
follows:
• If any operand or self-determined operation result on the right-hand side of the assignment is

unsigned, then all operands and self-determined operation results on the right-hand side are
treated as unsigned, and the smaller vectors are left-extended with zeros.

• If all operands and self-determined operation results on the right-hand side of the assignment
are signed, then all operands and self-determined operation results on the right-hand side are
left-extended using sign extension. 

Note the difference is steps 2 and 3! The context for largest vector size is both sides of an
assignment statement, whereas the context for sign extension is just the right-hand side of the
assignment containing the operation.

Verilog’s rules for operand expansion map to how hardware works. The following examples
illustrate cases Verilog’s rules work as one would expect (no gotchas).

logic        [3:0] u1, u2; // unsigned 4-bit vectors 
logic signed [3:0] s1, s2; // signed 4-bit vectors 

logic        [7:0] u3; // unsigned 8-bit vector 
logic signed [7:0] s3; // signed 8-bit vector 
logic o; // unsigned 1-bit vector 

u3 = u1 + u2; // zero extension (unsigned = unsigned + unsigned)

s3 = s1 + s2; // sign extension (signed = signed + signed)

s3 = s1 + 1; // sign extension (signed = signed + signed)

s3++; // sign extension (expands to s3 = s3 + 1, which is
// signed = signed + signed)
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u3 += 2'b11; // zero extension (expands to u3 = u3 + 2’b11, which is
// unsigned = unsigned + unsigned)

s3 += 2'sb11; // sign extension (expands to s3 = s3 + 2’sb11, which is
// signed = signed + signed)

A gotcha can occur is when an engineer forgets—or doesn’t understand—Verilog’s rules for
operator expansion rules. The following examples show a few circumstances where an engineer
might see different results than expected, if the rules for zero extension versus sign extension are
not well understood. These examples use the same declarations as the examples above.

s3 = u1 + u2; // GOTCHA? zero extension, even though S3 is signed type
// Rule: signed left-hand side does affect sign extension
// context of operands on right-hand side

u3 = s1 + s2; // GOTCHA? sign extension, even though U3 is unsigned type
// Rule: unsigned left-hand side does not affect sign
// extension context of operands on right-hand side

s3 = s1 + u2; // GOTCHA? zero extension, even though s1 and S3 are signed
// Rule: unsigned type on right-hand side means the
// entire right-hand side context is unsigned

s3 = s1 + 1'b1; // GOTCHA? zero extension, even though s1 and S3 are signed
// Rule: unsigned type on right-hand side means the
// entire right-hand side context is unsigned

s3 += 2'b11; // GOTCHA? zero extension, even though s3 is signed
// (operation is same as: s3 = s3 +2’b11)
// Rule: unsigned type on right-hand side means the
// entire right-hand side context is unsigned

u3 += 2'sb11; // GOTCHA? zero extension, even though the 2’sb11 is signed
// (operation is same as: u3 = u3 +2’sb11)
// Rule: unsigned type on right-hand side means the
// entire right-hand side context is unsigned

A compound expression can contain a mix of self-determined operations and context determined
operations. In this case, the resultant type (not the actual result) of the self-determined operation is
used to determine the types that will be used by the context-determined operations. The following
examples use the same declarations as the previous examples.

{o,u3} = u1 + u2; // First evaluate the self-determined concatenation on
// the left-hand side. This affects the size context of
// operations on the right-hand side (which are expanded
// to the 9-bit size of the concatenation result)

u3 = u1 + |u2; // First do unary OR of 8-bit vector u3 (self-determined)
// then zero-extend the 1-bit unary OR result to 8 bits
// before doing the context determined math operation

s3 = s1 + |s2; // GOTCHA? First do unary OR of 4-bit vector s2 (self-
// determined), then zero-extend s1 and the 1-bit
// unary OR result to 8 bits (even though s1 is a signed
// type, the |s2 result is unsigned, and therefore the
// right-hand side context is unsigned)
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The gotcha of zero extension versus sign extension illustrated in this section is, in reality, a useful
feature of the Verilog and SystemVerilog languages. A single operator token, such as +, can model
an adder with or without overflow, depending on the largest vector size in the context of the
operation. The same + operator can model either a signed adder or an unsigned adder, again
depending on the context of the operation. 

How to avoid this gotcha: The gotcha of operand expansion comes from not understanding when
vector expansion will occur, and whether the vector will be zero-extended or sign-extended. To
avoid this gotcha, engineers must know the underlying “loosely typed” rules of Verilog and
SystemVerilog. Once the rules are understood, engineers must use the correct sizes and data types
for the intended type of operation. Verilog-2001 provides control over the signed-ness of an
operand with the $signed() and $unsigned() functions. SystemVerilog gives engineers more
control over the application of these expansion rules through the use of type casting, size casting,
and signed-ness casting. For example (assuming the same declarations as in the examples above):

s3 = s1 + u2; // GOTCHA? zero extension (u2 is unsigned)

s3 = 8’(s1) + signed’(u2); // cast s1 to 32 bits wide (self-determined)
// cast u2 to signed and do sign extension

5.3 Signed arithmetic

Gotcha: Apparent signed arithmetic operations can use unsigned arithmetic, or incorrect sign
extension. 

Section 4.1 discussed some of the gotchas with literal number sign extension rules, and Section
5.2 covered gotchas with sign extension in operations. This section covers important gotchas
when performing arithmetic operations on signed data. Verilog overloads the math operators so
that they can represent several types of hardware. For example, the + operator can represent:
• An adder of any bit width with no carry-in or carry-out
• An adder of any bit width with no carry-in but with carry-out
• An adder of any bit width with carry-in and with carry-out
• An unsigned adder
• A signed adder
• A single-precision floating point adder
• A double-precision adder

The type of arithmetic performed is controlled by the types of the operands, and the context of the
operation. In order to perform signed operations, all operands must be signed. Arithmetic
operators are context-dependent, meaning not only must the operands to the arithmetic operator
be signed, all other operands on the right-hand side of an assignment must also be signed.

The example below is a signed adder with no gotchas, that simulates and synthesizes correctly.
module signed_adder_no_carry_in
(input logic signed [3:0] a, b, // signed 4-bit inputs
output logic signed [3:0] sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum} = a + b; // signed 5-bit adder
endmodule
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In the example above, the left-hand side concatenation is a self-determined expression that
defines a 5-bit unsigned vector. The size of the left-hand side affects the right-hand side ADD
operation, but the signed-ness of the left-hand side has no bearing on operations. All operands on
the right-hand side of the assignment are signed, which does affect the add operation. In this
context, the ADD operator performs a 5-bit signed operation.

Using an unsigned carry-in. The next example is almost the same, but adds a 1-bit carry-in
input. This example has a gotcha! It does not simulate or synthesize as a signed adder. 

module signed_adder_with_carry_in
(input logic signed [3:0] a, b, // signed 4-bit inputs
input logic ci, // unsigned 4-bit inputs
output logic signed [3:0] sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum} = a + b + ci; // GOTCHA: unsigned 5-bit adder
endmodule

In simulation, the only indication that there is a problem is in the value of the result when either a
or b is negative. In synthesis, DC will issue a warning message to the effect that a and b were
coerced to unsigned types. The reason for this coercion is that Verilog’s arithmetic operators are
context-dependent. Even though a and b are signed, one of the operands in the compound
expression, ci, is unsigned. Therefore, all operands are converted to unsigned values before any
context dependent operation is performed. GOTCHA! 

Using a signed carry-in. Declaring the 1-bit carry-in input as a signed type seems like it would
solve the problem. This change is illustrated below.

module signed_adder_with_carry_in
(input logic signed [3:0] a, b, // signed 4-bit inputs
input logic signed ci, // signed 4-bit inputs
output logic signed [3:0] sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum} = a + b + ci; // GOTCHA: ci is subtracted
endmodule

Now all operands on the right-hand side are signed, and so a signed operation will be performed,
right? GOTCHA! 

The example above does do signed arithmetic, but it does incorrect sign extension—at least it is
incorrect for the intended signed adder model. The gotcha again relates to the ADD operator
being context-dependent. As such, all operands are first expanded to the vector size of the largest
operand, which is the 5-bit self-determined concatenate operator on the left-hand side of the
assignment. Before the addition operations are performed, a, b and ci are sign-extended to be 5-
bits wide. This is correct for a and b, but is the wrong thing to do for ci. If ci has a value of zero,
sign-extending it to 5 bits will be 5’b00000, which is still zero. However, if ci is one, sign-
extending it to 5 bits will be 5’b11111, which is negative 1, instead of positive 1. The result of the
ADD operation when carry-in is set is a + b + -1. GOTCHA! 

Using sign casting. Verilog-2001 introduced the $signed and $unsigned conversion functions,
and SystemVerilog adds sign casting. These allow changing the signedness of an operand. The
following example uses sign casting to try to fix the signed adder problem.
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input logic ci, // unsigned 4-bit inputs
...
assign {co,sum} = a + b + signed’(ci); // GOTCHA: ci is subtracted

Casting the sign of the carry-in introduces the same gotcha as declaring carry-in as signed. When
carry-in is set, it is sign-extended to 5 bits, making the carry-in a negative 1. GOTCHA! 

How to avoid this gotcha: The real problem is that a signed 1-bit value cannot represent both a
value and a sign bit. Declaring or casting a 1-bit value to signed creates a value where the value
and the sign bit are the same bit. The correct way to avoid this signed arithmetic gotcha is to cast
the 1-bit carry-in input to a 2-bit signed expression, as follows:

assign {co,sum} = a + b + signed’({1’b0,ci}); // signed 5-bit adder

The signed’({1’b0,ci}) operation creates a 2-bit signed operand, with the sign bit always zero.
When the 2-bit signed value is sign-extended to the size of the largest vector in the expression
context, the sign extension will zero-extend, maintaining the positive value of the carry-in bit.

5.4 Bit select and part select operations

Gotcha: The result of a bit select or part select operation is always unsigned. 

Selecting a bit of a vector, or a part of a vector, is an operation. The bit-select and part-select
operators always return an unsigned value, even if the vector itself is signed. This change in
signed-ness can be unexpected, and is another source for signed arithmetic gotchas.

parameter SIZE = 31;

logic signed [SIZE:0] a, b; // signed vectors
logic signed [SIZE:0] sum1, sum2; // signed vectors
logic signed [ 7:0] sum3; // 8-bit signed vector

assign sum1 = a + b; // signed adder

assign sum2 = a[SIZE:0] + b[SIZE:0]; // GOTCHA! unsigned adder

assign sum3 = a[7:0] + b[7:0]; // GOTCHA! unsigned adder

The two gotchas above occur because the result of a part-select operation is always unsigned, and
bit-select and part-select operations are self-determined (and therefore evaluated before the
context-determined ADD operation). The context for the ADD operation is unsigned. 

How to avoid this gotcha: Since the assignment to sum2 is selecting the full vectors of a and b,
one easy way to avoid this gotcha is to just not do a part-select, as in the assignment to sum1.
However, code is often generated by software tools, which may automatically use part-selects,
even when the full vector is being selected. Part selects are also commonly used in heavily
parameterized models, where vector sizes can be redefined. For the sum3 example, above, there is
no choice but to do a part-select, since only part of the a and b vectors are being used. When a
part-select of a signed vector must be used, the correct modeling style is to cast the result of the
part-select to a signed value. Either the Verilog-2001 $signed function or SystemVerilog sign
casting can be used. For example:

assign sum2 = $signed(a[SIZE:0]) + $signed(b[SIZE:0]);

assign sum3 = signed’(a[7:0]) + signed’(b[7:0]);
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5.5 Increment, decrement and assignment operations 

Gotcha: Increment, decrement, and assignment operations perform blocking assignments. 

SystemVerilog provides the C-like ++ and -- increment/decrement operators, and the C-like
assignment operators such as +=, -=, *= and /=. The usage of the operators is intuitive and useful
in C programming, and that intuitive usage carries over to modeling verification testbenches in
SystemVerilog. But there is a gotcha when using these operators for modeling hardware. All of
these new operators behave as blocking assignments when updating their target variable.
Blocking assignments are only appropriate for representing combinational logic. If these
operators are used to model sequential logic, then a simulation race condition is likely to occur.
The following example illustrates such a race condition.

always_ff @(posedge clock, posedge reset)
if (reset) fifo_write_ptr = 0;
else if (!fifo_full) fifo_write_ptr++; 

always_ff @(posedge clock) 
if (fifo_write_ptr == 15) fifo_full <= 1;
else fifo_full <= 0;

The preceding example is not a good design example. It does, however, illustrate the gotcha with
using the ++ operator in sequential logic. The first procedural block modifies the value of
fifo_write_ptr on a clock edge. In parallel, and possibly in a very different location in the
source code, the second procedural block is reading the value of fifo_write_ptr on the same
clock edge. Because the ++ operator preforms a blocking assignment update to fifo_write_ptr,
the update can occur before or after the second block has sampled the value. Both event orders are
legal. It is very likely that two different simulators will function differently for this example.

How to avoid this gotcha: The SystemVerilog increment/decrement operators and the assignment
operators should not be used in sequential logic blocks. These operators should only be used in
combinational logic blocks, as a for-loop increment, and in contexts where the increment/
decrement operand is not being read by a concurrent process.

5.6 Pre-increment versus post-increment operations

Gotcha: pre-increment versus post-increment can affect the result of some expressions.

Pop Quiz: The following two lines of code do the same thing, right?
sum = i++;

sum = i+1;

Answer: No! GOTCHA! 

Like the C language, the SystemVerilog ++ increment operator (or -- decrement operator) can be
placed before a variable name (e.g. ++i) or after a variable name (e.g. i++). These two usages are
referred to as a pre-increment or a post-increment, respectively. The result of the operation is the
same; the variable is incremented by 1. In many contexts, pre-increment and post-increment can
be used interchangeably. In a for-loop step assignment, for example, either pre- or post-increment
can be used, with the same results.
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for (int i=0; i<=255; ++i) ... ;

for (int i=0; i<255; i++) ... ;

The two examples are functionally the same because ++i and i++ are stand-alone statements.
Nothing is using the value of i in the same statement in which it is incremented. The statement
which follows (the i<=255 test in this example) will see the new value of i, regardless of whether
it is a pre-increment or a post-increment.

The gotcha, which comes straight from the C language, is when the value of the variable is used
within the same statement in which it is being incremented (or decremented). If the increment
operator is before the variable name, the variable is incremented before the value is used in that
same statement (pre-increment). If the increment operator is placed after the variable, then the
value of the variable is used first in the same statement, and then incremented (post-increment).

i = 10;

j = i++; // assign i to j, then increment i; j gets 10

j = ++i; // increment i, then assign result to j; j gets 11

The effects of pre- and post-increment are less obvious in some contexts. For example:

i = 16;
while (i--) ... ; // test i, then decrement; loop will execute 16 times

while (--i) ... ; // decrement i, then test; loop will execute 15 times

How to avoid this gotcha: The only way to avoid this gotcha is to fully understand how pre- and
post-increment/decrement work. Both types of operations are useful, but need to be used with
prudence.

5.7 Operations that modify the same variable multiple times in an assignment

Gotcha: The evaluation order is undefined when a compound expression modifies the same
variable multiple times on the right-hand side of an assignment statement.

SystemVerilog has assignment operators (such as += and -=), and increment/decrement operators
(++ and --). These operators both read and modify the value of their operand. Two examples are:

j = ++i; // increment i, then assign result to j

j = (i += 1); // increment i, then assign result to j

Both of these examples modify a variable on the right-hand side of the assignment statement
before making the assignment. There is a gotcha, however, if the same variable is modified
multiple times in the same expression. For example:

i = 10;
j = --i + ++i;

In this example, the value of i is both read and modified multiple times on the right-hand side of
the assignment statement. The gotcha is that the SystemVerilog standard does not guarantee the
order of evaluation and execution of these multiple read/writes to the same variable in the same
expression. After execution, the value of j in this example could be 19, 20 or 21 (and perhaps
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even other values), depending upon the relative ordering of the increment operation and the
decrement operation. Some possible scenarios are: 

How to avoid this gotcha: This gotcha can be avoided by not using operators which make
multiple reads and writes to a variable within the same statement. The DC synthesis compiler
does not permit these types of operations, because of the indeterminate results.

5.8 Operator evaluation short circuiting

Gotcha: Simulation might not evaluate all operation operands in some circumstances.

Software simulation does not always evaluate statements exactly the same way as hardware.
Consider the following example:

always_ff @(posedge clock)
if (mem_en && write) mem[addr] <= data_in;

In this example, the logical-AND operator ( && ) checks for both mem_en and write to be true. In
hardware, this is an AND gate. The two inputs are continuously evaluated, and affect the output of
the AND gate. In simulation, however, the logical operation is performed from left-to-right. If
mem_en is false, then the result of the logical and operation is known, without having to evaluate
write. Exiting an operation when the answer is known, but before all operands have been
evaluated is referred to as operation short circuiting. The Verilog standard allows, but does not
require, software tools to short circuit logical-AND, logical-OR and the ?: conditional operations.
The Verilog standard is not clear as to whether other operators can short circuit. It neither
expressly permitted nor expressly prohibited.

Does short circuiting matter? Not in the preceding example. Simulation results of the logical-
AND operation will match the behavior of actual hardware. Now consider a slightly different
example:

always_ff @(posedge clock)
if ( f(in1, out1) && f(in2, out2) ) ... 

function f(input [7:0] d_in, output [7:0] d_out);
d_out = d_in + 1;
if (d_out == 255) return 0;
else return 1;

endfunction

The function in this example modifies the value passed into it and passes the value back as a
function output argument. In addition, the function returns a status flag. The function is called
twice, on the right-side and the left-side of the && operator. In hardware, the logical-AND operator

j = 10 + 11;
The ++i operation is executed first and increments i to 11, 
then --i sees the new value of i and decrements to 10.

j = 9 + 10;
The i-- operation is executed first and decrements i to 9, 
then ++i sees the new value of i and increments to 10.

j = 9 + 11;
The --i operation sees the original value of i and decrements to 9, 
and the i++ operation also sees the original value of i and increments to 11.
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can be implemented as an AND gate, and the function status return is replicated as combinational
logic to each input of the gate. As combinational logic, both out1 and out2 are continuously
updated to reflect their input values. In software, however, the two functions are evaluated from
left-to-right. If the return of the first function call is 0, then the operation might short-circuit. If
short circuiting does occur, then the function is not called the second time, and out2 is not
updated to reflect the value of in2. GOTCHA!

How to avoid this gotcha: The only way to avoid this gotcha is to avoid operands with side
effects. A side effect occurs when the operand modifies a value when the operand is evaluated. If
the operands do not have side effects, then the behavior of short circuiting will correctly match
hardware behavior.

6.0 Programming gotchas

6.1 Assignments in expressions 

Gotcha: SystemVerilog allows assignments within expressions, with the same gotchas as C. 

Gotcha: SystemVerilog’s syntax is different than C, confusing programmers familiar with C. 

In Verilog, assignments are not allowed within an expression. Therefore, the common C gotcha of
if (a=b) is illegal. Unfortunately, this also means the useful application of an assignment within
an expression is also illegal, such as: while (data = fscanf(...) ... .

SystemVerilog extends Verilog, and adds the ability to make an assignment within an expression.
Thus, with SystemVerilog, the intentional usage of this capability, such as to exit a loop on zero or
NULL, is legal. But, to prevent unintentional uses of this capability, such as if (a=b),
SystemVerilog requires that the assignment be enclosed in an expression. Thus:

if (a=b) ... // illegal in SystemVerilog

if ( (a=b) ) ... // legal in SystemVerilog, but probably not useful

while ((a=b)) ... // legal in SystemVerilog, and can be useful

Ironically, in an effort to prevent the common C gotcha of if (a=b), the SystemVerilog syntax
becomes a gotcha. Speaking from the personal experience of one of the authors, programmers
familiar with C will attempt, more than once, to use the C-like syntax, and then wonder why the
tool is reporting a syntax error. Is the error because, like Verilog, assignments in an expression are
not allowed? Is the error because the tool has not implemented the capability? No, it is an error
because SystemVerilog’s syntax is different than C’s. GOTCHA!

How to avoid this gotcha: The SystemVerilog syntax can help prevent the infamous C gotcha of
if (a=b). The gotcha of a different syntax cannot be avoided, however. Engineers must learn, and
remember, that C and SystemVerilog use a different syntax to make an assignment within an
expression.

6.2 Procedural block activation

Gotcha: Initial procedural blocks can activate in any order relative to always procedural blocks. 

A common gotcha for new users to Verilog and SystemVerilog is understanding the scheduling
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and/or use of initial procedural blocks. Because of the name “initial”, many engineers
mistakenly believe that this block is executed before any always procedural blocks. Other
engineers mistakenly believe just the opposite, thinking that initial blocks are guaranteed to
execute after all always blocks are active.These are incorrect assumptions! The Verilog and
SystemVerilog standards state that all procedural blocks, regardless of their type, become active at
time zero, and in any order. Verilog initial blocks have no precedence over always blocks, nor
do always blocks have any precedence over initial blocks. As each procedural block is
activated, a simulator can, but is not required to, execute statements in the block until a Verilog
timing control is encountered.

The false assumption that initial procedural blocks will execute before any always procedural
blocks, or vice-versa, can lead engineers to create stimulus that does not give the same results on
different simulators. A simple, but common, example is of this false assumption is:

module test;
logic reset; 
... // other declarations
chip dut (.reset, ...); // instance of design under test

initial begin
reset = 1; // activate reset at time zero
#10 reset = 0;
...

end
endmodule 

module chip (input reset, ...);

always @(posedge clock or posedge reset)
if (reset) q = 0;
else q = d;

endmodule

In this example, it is false to assume that either the initial procedural block in the testbench or
the always procedural block in the design will activate first. The Verilog standard allows either
procedural block to be activated before the other. If a simulator activates the always procedural
block first, it will encounter the @ timing control in the sensitivity list and suspend execution while
waiting for a positive edge of clock or reset. Then, when the initial procedural block
activates and changes reset to a 1, the always block will sense the change and the flip-flop will
reset at time zero. On the other hand, if the initial procedural block executes first, reset will be
set to a 1 before the always block is activated Then, when the always block is activated, the
positive edge of reset will already have occurred, and the flip-flop will not reset at time zero.
Different simulators can, and usually do, activate multiple procedural blocks in a different order.
GOTCHA! 

How to avoid this gotcha: This gotcha is avoided by proper education and understanding of the
Verilog event scheduling of concurrent statements. In the example above, the fix is to make the
time zero assignment to reset a nonblocking assignment. The scheduling of nonblocking
assignments guarantees that all procedural blocks, whether initial or always, have been
activated, in any order, before the assignment takes place.
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6.3 Combinational logic sensitivity lists

Gotcha: @* might not infer a complete combinational logic sensitivity list. 

Verilog always procedural blocks are used to model designs for synthesis. The synthesizable RTL
modeling style requires that an always block have an edge sensitive timing control (the @ token)
specified immediately following the always keyword. This time control is referred to as the
procedural block’s sensitivity list. When modeling combinational logic, if the sensitivity list is not
complete, then the outputs of the block will not be updated for all possible input changes. This
behavior models a latch in simulation. However, synthesis will assume a complete sensitivity list
and build combinational logic instead of a latch. The simulation results of the RTL model and the
synthesized gate-level model will not match. GOTCHA!

How to avoid this gotcha: The Verilog 2001 standard added an @* wildcard sensitivity list that
infers a complete sensitivity list for both simulation and synthesis. However, the @* has a gotcha
that will be discussed later in this section. SystemVerilog introduced two specialized procedural
blocks that infer a complete sensitivity list, always_comb and always_latch. The preferred
method to avoid sensitivity list gotchas is to use the SystemVerilog procedural blocks. 

Verilog’s @* has a subtle gotcha that is not widely known in the design community. @* will only
infer sensitivity to signals directly referenced in the always block. It will not infer sensitivity to
signals that are externally referenced in a function or a task that is called from the always block.
That is, the @* will only be sensitive to the signals passed into the function or task. The following
example illustrates this gotcha:

module chip (input wire [ 7:0] a, b,
input wire [15:0] max_prod,
input wire [ 8:0] max_sum,
input wire error,
output logic [ 8:0] sum_out,
output logic [15:0] mult_out);

function [8:0] mult (input [7:0] m, n);
mult = 0; 
if (!error) // error is an external signal 

mult = m * n;
if (mult > max_prod) // max_prod is an external signal

mult = max_prod;
endfunction

 task sum (input [7:0] p, q, output [8:0] sum_out);
sum_out = 0;
if (!error) // error is an external signal

sum_out = p + q;
if (sum_out > max_sum) // max_sum is an external signal

sum_out = max_sum;
endtask 

always @* begin // @* will only be sensitive to a and b
sum(a, b, sum_out); // @* will not be sensitive to max_prod,

// max_sum or error
mult_out = mult(a, b);

end 
endmodule 
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In the preceding example, the sensitivity list inferred by @* will not be complete, and therefore
will not correctly represent combinational logic in RTL simulations. Synthesis will assume a
complete sensitivity list, leading to a mismatch in RTL simulation versus the gate-level
simulation. GOTCHA!

How to avoid this gotcha: To avoid this gotcha for function calls, the SystemVerilog
always_comb should be used instead of always @*. The always_comb procedural block will
descend into function calls to infer its sensitivity list. However, always_comb does not descend
into task calls. If a task style subroutine is needed, a SystemVerilog void function should be used.
Void functions are used like a task, but have the syntax and semantic restrictions of a function,
and always_comb will descend into the function to infer a complete sensitivity list.

6.4 Arrays in sensitivity lists 

Gotcha: It is not straightforward to explicitly specify a combinational logic sensitivity list when
the combinational logic reads values from an array. 

A subtlety that is not well understood is combinational logic sensitivity when the logic reads a
value from an array. For example::

logic [31:0] mem_array [0:1023]; // array of 32-bit variables

always @( /* WHAT GOES HERE? */ ) // need combinational sensitivity
data = mem_array[addr];

In order to accurately model true hardware combinational logic behavior, what should the
sensitivity include? Should the logic only be sensitive to changes in addr, or should it also be
sensitive to changes in the contents of mem_array being selected by addr? If sensitive to changes
in the contents of mem_array, which address of the array?

The answer, in actual hardware, is that data will continually reflect the value that is currently
being selected from the array. If the address changes, data will reflect that change. If the contents
of the array location currently being indexed changes, data will also reflect that change. 

The problem, and gotcha, is that this behavior is not so easy to model at the RTL level, using an
explicit sensitivity list. In essence, the sensitivity list only needs to be sensitive to changes on two
things: addr, and the location in mem_array currently selected by addr. But, an explicit
sensitivity list needs to be hard coded before simulation is run, which means the value of addr is
not known at the time the model is written. Therefore, the explicit sensitivity list needs to be
sensitive to changes on any and all locations of mem_array, rather than just the current location.

To be sensitive to the entire array, it would seem reasonable to write:
always @( addr or mem_array ) // ERROR!

data = mem_array[addr];

Unfortunately, the example above is a syntax error. Neither Verilog nor SystemVerilog allow
explicitly naming an entire array in a sensitivity list. Only explicit selects from an array can be
listed. For example:

always @( addr or mem_array[0] or mem_array[1] or mem_array[2] ... )
data = mem_array[addr];
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This example will work, but it is not practical to explicitly list every array location. Even the
relatively small one-dimensional array used in this example, which has 1024 addresses, would be
tedious to code.

What about the following example? Will it be sensitive to both addr and the value of the
mem_array location currently selected by addr?

always @( mem_array[addr] ) // Does this work? 
data = mem_array[addr];

The answer is...It almost works. The example above is sensitive to a change in value of
mem_array at the location currently indexed by addr. However, it is not sensitive to changes on
addr. If addr changes, data will not be re-evaluated to reflect the change. GOTCHA! 

How to avoid this gotcha: There are three ways to properly model combinational logic sensitivity
when reading from an array. The best way is to use Verilog’s always @* or SystemVerilog’s
always_comb to infer the sensitivity list. Both constructs will infer a correct sensitivity list. Using
always_comb has an added advantage of triggering once at simulation time zero even if nothing
in the sensitivity list changed. This ensures that the outputs of the combinational logic match the
inputs at the beginning of simulation.

always @* // This works correctly 
data = mem_array[addr];

always_comb // This works correctly 
data = mem_array[addr];

The Verilog-1995 solution to this gotcha is to explicitly specify a sensitivity list that includes the
select address and an array select with that address. For example:

always @( addr, mem_array[addr] ) // This works correctly 
data = mem_array[addr];

The third method is to use a continuous assignment instead of a procedural block to model the
combinational logic. This will work correctly, but has the limitation that continuous assignments
cannot directly use programming statements.

assign data = mem_array[addr];

6.5 Vectors in sequential logic sensitivity lists 

Gotcha: A sequential logic sensitivity list triggers on changes to the least-significant bit of the
vector. 

A sensitivity list can trigger on changes to a vector, which, in the right context, is useful and
important.

logic [15:0] address, data;

always @(address or data) // OK: trigger on change to any bit of vectors
...

There is a gotcha if the sensitivity list contains a posedge or negedge edge qualifier on a vector.
In this case, the edge event will only trigger on a change to the least-significant bit of the vector.
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always @(posedge address) // GOTCHA! edge detect on a vector
...

How to avoid this gotcha: Only single bit items should be used with posedge or negedge edge
events. If a vector is to be used, then specify which bit is to be used for the edge detect trigger.
The code above could be written as:

always @(posedge address[15]) // trigger to change on MSB of vector
...

6.6 Operations in sensitivity lists 

Gotcha: Operations in sensitivity lists only trigger on changes to the operation result. 

Occasionally, an engineer might mistakenly use the vertical bar “ | ” OR operator instead of the
“or” keyword as a delimiter in a sensitivity list. The code compiles without any errors, but does
not function as expected. GOTCHA! 

The @ symbol is typically used to monitor a list of identifiers used as event triggers for a
procedural block sensitivity list. The Verilog standard also allows @ to monitor an event
expression. 

always @(a or b) // “or” is a separator, not an operator
sum = a + b;

always @(a | b) // GOTCHA! “|” is an operator, not a separator
sum = a + b;

always @(a && b) // GOTCHA!
sum = a + b;

always @(a == b) // GOTCHA!
sum = a + b;

When an operation is used in a sensitivity list, the @ token will trigger on a change to the result of
the operation. It will not trigger on changes to the operands. In the always @(a | b) example
above, if a is 1, and b changes, the result of the OR operation will not change, and the procedural
block will not trigger.

Why does Verilog allow this gotcha? Using expressions in the sensitivity list can be useful for
modeling concise, verification monitors or high-level bus-functional models. It is strictly a
behavioral coding style, and it is one that is rarely used. An example usage might be to trigger on
a change to a true/false test, such as always @(address1 != address2). The procedural block
sensitivity list will trigger if the expression changes from false to true (0 to 1), or vice-versa. 

How to avoid this gotcha: When modeling combinational logic, the best way to avoid this gotcha
is to use the SystemVerilog always_comb or always_latch procedural blocks. These procedural
blocks automatically infer a correct sensitivity list, which removes any possibility of typos or
mistakes. The Verilog @* can also be used, but this has its own gotcha (see Section 6.3). When
modeling sequential logic, engineers need to be careful to avoid using operations within a
sensitivity list.
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6.7 Sequential blocks with begin...end groups 

Gotcha: Resetable sequential procedural blocks with a begin..end block can contain statements
that do not function correctly. 

A common modeling style is to place a begin...end block around the code in initial and
always procedural blocks, even when the procedural block contains just one statement. Some
companies even mandate this modeling style. For example:

always @(State) begin 
NextState = WAITE; // first statement in block 
case (State) // second statement in block 

WAITE: if (ready) NextState = LOAD;
LOAD: if (done) NextState = WAITE;

endcase
end 

This modeling style has a gotcha when modeling resetable sequential logic, such as flip-flops. A
synthesis requirement is that a resetable sequential procedural block should only contain a single
if...else statement (though each branch of the if...else might contain multiple statements). An
example of a correct sequential procedural block is:

always @(posedge clock or negedge resetN)
if (!resetN) State <= RESET;
else State <= NextState;

The purpose of begin...end is to group multiple statements together so that they are semantically
a single statement. If there is only one statement in the procedural block, then the begin...end is
not required. In a combinational logic procedural block, specifying begin...end when it is not
needed is extra typing, but does not cause any problems. When modeling sequential logic that has
reset functionality, however, adding begin...end can lead to modeling errors. This error is that the
resetable sequential block should only contain a single if...else statement, but the begin...end
allows additional statements without a simulation syntax error. For example:

always @(posedge clock or negedge resetN) begin 
if (!resetN) State <= RESET;
else State <= NextState;
fsm_out <= decode_func(NextState); // second statement in block

end 

This example will simulate, and, if the simulation results are not analyzed carefully, it may appear
that fsm_out behaves as a flip-flop that is set on a positive edge of clock. GOTCHA! 

In the example above, fsm_out is not part of the if...else decision for the reset logic. This means
fsm_out does not get reset by the reset logic. Even worse, is that when a reset occurs, the
fsm_out assignment will be executed, asynchronous to the clock, which is not flip-flop behavior.

This gotcha is an example where Verilog allows engineers to prove what won’t work in hardware.
The Synopsys DC synthesis compiler will not allow statements outside of an if...else statement
in resetable sequential procedural blocks. The example above can be simulated (and proven to not
work correctly), but cannot be synthesized.

How to avoid this gotcha: The modeling style of using begin...end in all procedural blocks is not
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appropriate for resetable sequential procedural blocks. Indeed, a good modeling style is to
mandate that begin...end not be used in sequential procedural blocks that have reset logic. 

6.8 Sequential blocks with partial resets

Gotcha: Resetable sequential procedural blocks can incorrectly only reset some of the outputs. 

A syntactically legal, but functionally incorrect, flip-flop model is illustrated below:
always @(posedge clock or negedge resetN)

if (!resetN) begin 
q1 <= 0;
q2 <= 0;
q3 <= 0;

end
else begin 

q1 <= ~q4;
q2 <= q1;
q3 <= q2;
q4 <= q3;

end 

The problem with the example above is that q4 is not part of the reset logic, but is part of the
clocked logic. Because q4 is not reset, it is not the same type of flip-flop as q1, q2 and q3. 

This modeling mistake will simulate and synthesize as working hardware, so technically, it is not
a gotcha. However, .To implement this functionality, DC will add additional gates to the
synthesized circuit, that is both area and timing inefficient. These unwanted, and probably
unexpected, extra gates is a gotcha.

How to avoid this gotcha: The way to avoid this gotcha is careful modeling. Designers need to be
sure that the same variables are assigned values in both branches of the if...else decision.
SystemVerilog cross coverage can be useful in verifying that all variables that are assigned values
on a clock are also reset.

6.9 Blocking assignments in sequential procedural blocks

Gotcha: Sequential logic blocks can have combinational logic blocking assignments. 

Verilog has two types of assignments: Blocking assignments (e.g. a = b) have the simulation
behavior of hardware combinational logic. Nonblocking assignments (e.g. q <= d) have the
behavior of hardware sequential logic with a clock-to-q propagation.

The following example illustrates a very common Verilog coding gotcha. The example uses a
blocking assignment where a nonblocking assignment would normally be used. The use of
blocking assignments in a clocked procedural block is not a syntax error. The example proves that
a shift register will not work if a flip-flop does not have a clock-to-q delay.

always @(posedge clock) begin // NOT a shift register
q1 = d; // load d into q1 without a clock-to-q delay
q2 = q1; // load q1 to q2 

end
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Why does Verilog allow blocking assignments in sequential procedural blocks if they result in
simulation race conditions? For two reasons. One reason is that if the sequential logic block uses
a temporary variable that is assigned and read within the block, that assignment needs to be made
with a blocking assignment. A second reason is the underlying philosophy of Verilog that a
hardware description and verification language needs to be able to prove what will work
correctly—and what won’t work correctly—in hardware.

In the example above, if q1 and q2 were positive edge triggered flip-flops, then this example
would represent a shift register, where d is loaded into flip-flop q1 on a positive edge of clock, and
then shifted into q2 on the next positive edge of clock. Using simulation, however, it can be
proven that this example does not behave as a shift register. Verilog’s blocking assignment to q1
“blocks” the evaluation of the statement that follows it, until the value of q1 has been updated.
This means that the value of d passes directly to q2 on the first clock edge, rather than being
shifted through a flip-flop with a clock-to-q delay. In other words, the example has proven that a
flip-flop without a clock-to-q propagation behavior will not function properly in hardware.

As an aside, the DC synthesis compiler will recognize that q1 behaves like a buffer, rather than a
flip-flop. If the value of q1 is not used outside of the procedural block, then DC will optimize out
the buffer, and d will be directly loaded into q2.

How to avoid this gotcha: Engineers should adopt a modeling style that requires the use of
nonblocking assignments in sequential procedural blocks. Code checking tools such as LEDA can
help enforce this coding style. However, engineers also need to fully understand the difference in
how blocking and nonblocking assignments work. There will arise the occasional exception to the
rule, where a blocking assignment is needed within a sequential procedural block. Only by
understanding how these two assignments work, will engineers know when to correctly make an
exception to the rule.

6.10 Evaluation of true/false on 4-state values 

Gotcha: A true/false test can result in three answers. 

Is the expression 4’b010Z true or false? At least one bit in the vector is a logic 1, so does this
mean the expression is true?

How Verilog and SystemVerilog evaluate an expression as being true or false is not always well
understood. The issue is that the expression can be a vector of any bit width, and can be either a 2-
state expression (each bit might have the logic values 0 or 1), or a 4-state expression (each bit
might have the logic values 0, 1, Z or X). 

The rules for evaluating whether a 2-state expression is true or false are:
• If all bits of the expression are zero, then the expression is false.
• If any bits of the expression is one, then the expression is true.

The rules for evaluating whether a 4-state expression is true or false are:
• If all bits of the expression are zero, then the expression is false.
• If any bits of the expression is one, and (GOTCHA!) no bits are Z or X, then the expression is

true.
• If any bits of an expression are X or Z, then the expression is unknown in a true/false test.
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The rules for 2-state true/false evaluations are simple and intuitive. They match the C language
(and other languages). The gotcha is not understanding how a vector with 4-state values is
evaluated as true or false. 

How to avoid this gotcha: This gotcha can only be avoided by understanding how 4-state values
are evaluated as true or false. Both design and verification engineers need to know that, in order
for a 4-state expression to be true or false, no bits in the expression can have a Z or X value.

6.11 Mixing up the not operator ( ! ) and invert operator ( ~ ) 

Gotcha: The not operator and the inverse operator can be used incorrectly. 

Engineers new to Verilog, and even a few veterans, sometimes misuse the Verilog logical not
operator and the bitwise invert operator. In some cases, the results of these operations happen to
be the same, but, in other cases, they yield very different results. Consider the following example:

logic a; // 1-bit 4-state variable
logic [1:0] b; // 2-bit 4-state variable

initial begin
a = 1;
b = 1;

if (!a) ... // evaluates as FALSE
if (~a) ... // evaluates as FALSE

if (!b) ... // evaluates as FALSE
if (~b) ... // evaluates as TRUE -- GOTCHA!

end

The gotcha is that the logical not operator inverts the results of a true/false test. This means the
true/false evaluation is done first, and then the 1-bit true/false result is inverted. On the other
hand, the bitwise invert operator simply inverts the value of each bit of a vector. If this operation
is used in the context of a true/false test, the bit inversion occurs first, and the true/false evaluation
is performed second, possibly on a multi-bit value. Inverting the bits of a vector, and then testing
to see whether it is true or false is not the same as testing whether the vector is true or false, and
then inverting the result of that test. GOTCHA!

How to avoid this gotcha: The bitwise invert operator should never be used to negate logical true/
false tests. Logical test negation should use the logical not operator.

6.12 Nested if...else blocks 

Gotcha: Nesting of if statements can lead to incorrect matching of if...else pairs. 

The else branch of a Verilog if...else statement is optional. This can lead to confusion when
if...else statements are nested within other if...else statements, and some of the optional else
statements are not specified. Which else goes to which if? The following example is a gotcha...

if (a >= 5)
if (a <= 10)

$display (“ 'a' is between 5 and 10”);
else 

$display (“ 'a' is less than 5”); // GOTCHA!
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The indentation of the code above implies that the else statement goes with the first if statement,
but that is not how Verilog works (and indentation does not change the language rules). Verilog
language rules state that an else statement is automatically associated with the nearest previous
if statement that does not have an else. Therefore, the example above, with correct indentation
and $display statements, is actually:

if (a >= 5)
if (a <= 10)

$display (“ 'a' is between 5 and 10”);
else 

$display (“ 'a' is greater than 10”);

How to avoid this gotcha: The automatic if...else association of Verilog can be overridden using
begin...end to explicitly show which statements belong within an if branch. The first example,
above, can be correctly coded as follows:

if (a >= 5) begin 
if (a <= 10)

$display (“ 'a' is between 5 and 10”);
end 
else 

$display (“ 'a' is less than 5”); // CORRECT!

A good language-aware text editor can also help avoid this gotcha. A good editor can properly
indent nested if...else statements, making it more obvious which else goes with which if.

6.13 Casez/casex masks in case expressions

Gotcha: Masked bits can be specified on either side of a case statement comparison. 

Verilog’s casez and casex statements allow bits to be masked out from the case comparisons.
With casez, any bits set to Z or ? are masked out. With casex, any bits set to X, Z or ? are masked
out. These constructs are useful for concisely modeling many types of hardware, as well as in
verification code. An example of using the wildcard casex statements is:

always_comb begin
casex (instruction)

4'b0???: opcode = instruction[2:0]; // only test upper bit
4'b1000: opcode = 3'b001;
... // decode other valid instructions
default: begin

$display (“ERROR: invalid instruction!”);
opcode = 3'bxxx;

end
endcase

end

In the preceding example, the mask bits are set in the first case item, using 4’b0???. The intent is
that, if the left-most bit of instruction is 0, the other bits do not need to be evaluated. After all
possible valid instructions have been decoded, a default branch is used to trap a design problem,
should an invalid instruction occur.

What case branch will be taken if there is a design problem, and instruction has the value
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4’bxxxx? The intuitive answer is that the default branch will be taken, and an invalid instruction
will be reported. GOTCHA!

The casex and casez statements allow the mask bit to be set on either side of the comparison. In
the preceding example, if instruction has a value of 4’bxxxx or (or 4’bzzzz), all bits are masked
from the comparison, which means the first branch of the case statement will be executed.

How to avoid this gotcha: A partial solution is to use casez instead of casex. In the example used
in this section, if a casez were used, a design problem that causes an instruction of 4’bxxxx (or
even just an X in the left-most bit) will not be masked, and an invalid instruction will be reported
by the default branch. However, a design problem that cause an instruction of 4’bzzzz (or just a Z
in the left-most bit) will still be masked, and an invalid instruction will not be trapped.

SystemVerilog offers two solutions to this gotcha. The first solution is a special one-sided,
wildcard comparison operator, ==? (there is also a !=? operator). This wildcard operator works
similar to casex, in that bits can be masked from the comparison using X, Z or ?. However, the
mask bits can only be set in the left-hand side of the comparison. In the following example, any X
or Z bits in instruction will not be masked, and the invalid instruction will be trapped:

if (instruction ==? 4’b0???) opcode = instruction[2:0];
else if ... // decode other valid instructions
else begin

$display (“ERROR: invalid instruction!”);
opcode = 3'bxxx;

end 

A second solution to the gotcha is the SystemVerilog case() inside statement. This statement
allows mask bits to be used in the case items using X, Z or ?, as with casex. But, case() inside
uses a one-way, asymmetric masking for the comparison. Any X or Z bits in the case expression
are not masked. In the following example, any X or Z bits in instruction will not be masked,
and the invalid instruction will be trapped:

always_comb begin
case (instruction) inside 

4'b0???: opcode = instruction[2:0]; // only test upper bit
4'b1000: opcode = 3'b001;
... // decode other valid instructions
default: begin

$display (“ERROR: invalid instruction!”);
opcode = 3'bxxx;

end
endcase

end

6.14 Incomplete or redundant decisions 

Gotcha: Incomplete case statements or if...else decision statements, and redundant decision select
items can result in design errors. 

Verilog’s if...else and case statements (including casez and casex) have three gotchas that
often result in design problems:

• Not all possible branches need to be specified (incomplete decisions)
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• Redundant (duplicate) decision branches can be specified
• Software simulation evaluates decisions in the order listed (priority decoding), but the

decision might be able to be evaluated in any order in hardware (parallel decoding).

Verilog synthesis compilers attempt to overcome these Verilog gotchas, using synthesis
full_case and parallel_case pragmas. These pragmas, however, are fraught with danger, and
often introduce worse gotchas than those that they solve. These gotchas are well documented in a
SNUG 1999 paper, “‘full_case parallel_case’, the Evil Twins of Verilog Synthesis”[5].

How to avoid these gotchas: SystemVerilog adds two decision modifiers, unique and priority.
For example:

unique case (sel) priority if (a == 0) out = 0;
2’b00: y = a; else if (a < 5) out = 1;
2’b01: y = b; else if (a < 10) out = 2;
2’b10: y = c; else out = 3;
2’b11: y = d;

endcase

These modifiers eliminate all of the gotchas with incomplete and redundant decision statements,
and prevent the gotchas common to synthesis full_case and parallel_case pragmas. The
benefits of the unique and priority decision modifiers are described in two other SNUG papers,
“SystemVerilog Saves the Day—the Evil Twins are Defeated! ‘unique’ and ‘priority’ are the new
Heroes”[6], and “SystemVerilog’s priority & unique—A Solution to Verilog’s ‘full_case’ &
‘parallel_case’ Evil Twins!”[7]. These benefits are not repeated in this paper.

There is, however, a Synopsys DC synthesis compiler gotcha with the SystemVerilog priority
decision modifier. The keyword “priority” would seem to indicate that the order of a multi-branch
decision statement will be maintained by synthesis. DC does not do this. DC will still optimize
priority case decision ordering, the same as with a regular case decision statement. While
gate-level optimization is a good thing, it is a gotcha if the designer is expecting a priority case
statement to automatically have the identical priority decoding logic after synthesis.

6.15 Out-of-bounds assignments to enumerated types 

Gotcha: Enumerated types can have values other than those in their enumerated list. 

Verilog is a loosely typed language. Any data type can be assigned to a variable of a different type
without an error or warning. Unlike Verilog, the SystemVerilog enumerated type is, in theory, a
strongly typed variable. Part of the definition of an enumerated type variable is the legal set of
values for that variable. For example:

typedef enum bit [2:0] {WAITE = 3’b001,
LOAD = 3’b010,
STORE = 3’b100} states_t;

states_t State, NextState; // two enumerated variables

A surprising gotcha is that an enumerated type variable can have values that are outside of the
defined set of values. Out-of-bounds values can occur in two ways: uninitialized variables and
statically cast values. Each of these is explained in more detail, below.
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As with all static Verilog and SystemVerilog variables, enumerated variables begin simulation
with a default value. For enumerated variables, this default is the uninitialized value of its base
data type. In the preceding example, the base data type of State is a 2-state bit type, which
begins simulation with an uninitialized value of zero. This value is not in the variable’s
enumerated list, and is, therefore, out-of-bounds. GOTCHA! 

How to avoid this gotcha: In actuality, this gotcha can be a positive one. If the uninitialized
enumerated variable value is out-of-bounds, it is a clear indication that the design has not been
properly reset. This is even more obvious if the base data type is a 4-state type, which has an
uninitialized value of X.

SystemVerilog requires that any procedural assignment to an enumerated variable be in the
enumerated list, or from another variable of the same enumerated type. The following examples
illustrate legal and illegal assignments to State:

NextState = LOAD; // legal assignment
NextState = State; // legal assignment
NextState = 5; // illegal (not in enumerated label list)
NextState = 3’b001; // illegal (not in enumerated label list)
NextState = State + 1; // illegal (not in enumerated list)

SystemVerilog allows a normally illegal assignment to be made to an enumerated variable using
casting. For example:

NextState = states_t’(State + 1); // legal assignment, but a GOTCHA!

When a value is cast to an enumerated type, and assigned to an enumerated variable, the value is
forced into the variable, without any type checking. In the example above, if State had the value
of WAITE (3’b001), then State + 1 would result in the value of 3’b010. This can be forced into
the NextState variable using casting. As it happens, this value matches the enumerated label
LOAD. If, however, State had the value of LOAD, then State + 1 would result in the value of
3’b011. When this value is forced into the enumerated variable NextState, it does not match any
of the enumerated labels. The NextState variable now has an out-of-bounds value. GOTCHA!

How to avoid this gotcha: There are two ways to avoid this gotcha. Instead of using the cast
operator, the SystemVerilog dynamic $cast function can be used. Dynamic casting performs run-
time error checking, and will not assign an out-of-bounds value to an enumerated variable. In
addition, SystemVerilog enumerated types have several built-in methods which can manipulate
the values of enumerated variables, and, at the same time, ensure the variable never goes out-of-
bounds. For example, the .next() method will increment an enumerated variable to the next
label in the enumerated list, rather than incrementing by the value of 1. If the enumerated variable
is at the last label in the enumerated list, .next() will wrap around to the first label in the list. An
example of using the .next() method is:

NextState = State.next(1); // increment by one to next label in list

6.16 Statements that hide design problems 

Gotcha: Some programming statements do not propagate design errors. 

In 4-state simulation, a logic value of X can occur. Logic X is not a real hardware logic value. Nor
is it a “don’t care”, as it is in some data books. Logic X is the simulator’s way of saying that
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simulation algorithms cannot predict what actual hardware would do with a given set of
circumstances. While no engineer likes to see X values in the simulation log files or waveform
displays, savvy engineers have come to know that X is their friend. When an X value does show
up, it is a clear indication of a problem in a design.

But there is a gotcha. A number of Verilog programming statements can swallow an X value, and
generate a seemingly good value. These statements hide design problems, which can be
disastrous. Two of the most common X hiding constructs are decisions statements and optimistic
operators. An example of a decision statement that will hide design errors is:

always_comb begin
if ( sel) y = a; // 2-to-1 MUX
else y = b;

end

In this example, should a design bug cause sel to have a logic X, the else branch will be taken, and
a valid value assigned to y. The design bug has been hidden. GOTCHA!

How to avoid this gotcha: The simple example above could be re-coded to trap an X value on sel.
However, this extra code must be hidden from synthesis compilers, as it is not really part of the
hardware. For example:

always_comb begin 
if (sel)

y = a; // do true statements
else 

//synopsys translate_off 
if (!if_condition)

//synopsys translate_on 
y = b; // do the not true statements

//synopsys translate_off 
else 

$display(“if condition tested either an X or Z”);
//synopsys translate_on 
end

A better way to avoid this gotcha is to use SystemVerilog assertions. Assertions have several
advantages. Assertions are much more concise than using programming statements to trap
problems. Assertions do not need to be hidden from synthesis compilers. Assertions are not likely
to affect the design code. Assertions can easily be turned on and off using large grain or fine grain
controls. Assertions can also provide verification coverage information. An assertion for the
example above can be written as:

always_comb begin
assert ($isunknown(sel)) else $error(“sel = X”);
if ( sel) y = a; // 2-to-1 MUX
else y = b;

end

For more details on X hiding gotchas and using assertions to detect design problems, refer to the
SNUG paper “Being Assertive With Your X”[8], and “SystemVerilog Assertions are for Design
Engineers, too”[9].
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6.17 Simulation versus synthesis mismatches 

Gotcha: Some coding styles can simulate correctly, but synthesize to hardware that is not
functionally the same. 

A number of programming statements will simulate one way, but have subtle functional
differences from the gate-level implementation created by the DC synthesis compiler. Several of
the most common gotchas have been covered under other sections in this paper. Another excellent
SNUG paper provides additional insights on modeling gotchas that affect synthesis, “RTL Coding
Styles That Yield Simulation and Synthesis Mismatches”[10].

7.0 Testbench gotchas

7.1 Multiple levels of the same virtual method

Gotcha: A virtual method can be re-defined multiple times, leading to confusion as to which
virtual method definition is actually used. 

A base class can have a virtual method. If the base class itself is not virtual, then its virtual method
must be defined so that the base class can be constructed. That is, when the base class is
constructed, it will require a stand-alone definition of its virtual method. When that base class is
extended, the child class can generate a new definition of the base class virtual method. If the
child class designates this method as virtual also, then, when it is extended to yet another child
level (grandchild), the grandchild can redefine the virtual method of its parent. 

The example below shows a base class, called base, with a virtual method called
print_something. The base class is extended by class ext1.   In turn, ext1 is extended by class
ext2. The print_somthing method is designated as virtual in all three classes. The gotcha is in
understanding which method is actually used when all three levels have different definitions for
the same virtual method. The answer is that there will only ever be one definition for a virtual
method within a constructed class, and it is always the definition that is the furthest descendent
from the base.

package tb_classes;

class base;
virtual task print_something;

$display(“printing from base”);
endtask: print_something

endclass: base

class ext1 extends base;
virtual task print_something;

$display(“printing from ext1”);
endtask: print_something

endclass: ext1

class ext2 extends ext1;
virtual task print_something;

$display(“printing from ext2”);
endtask: print_something

endclass: ext2
endpackage: tb_classes
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program tb_base;
import tb_classes::*;
base b = new;
initial begin

b.print_something; // message displayed is “print from base”
end

endprogram: tb_base

program tb_ext1;
import tb_classes::*;
base b;
ext1 e1 = new;
initial begin

b = e1;
b.print_something; // message displayed is “print from ext1”
e1.print_something; // message displayed is “print from ext1”

end
endprogram: tb_ext1

program tb_ext2;
import tb_classes::*;
base b;
ext1 e1;
ext2 e2 = new;
initial begin

b = e1;
e1 = e2;
b.print_something; // message displayed is “print from ext2”
e1.print_something; // message displayed is “print from ext2”
e2.print_something; // message displayed is “print from ext2”

end
endprogram: tb_ext2

How to avoid this gotcha: This gotcha can be avoided by proper training and an understanding of
how SystemVerilog virtual methods work, coupled with adopting a proper object-oriented
verification usage methodology, such as the Synopsys VMM.

7.2 Event trigger race conditions

Gotcha: An event that is triggered in the same time step in which a process begins looking for the
event may not be sensed. 

Verilog provides a basic inter-process synchronization mechanism via the event data type. There
are two gotchas associated with Verilog’s event synchronization. The first gotcha may or may not
really be considered a gotcha, but experience has shown this to be an issue over the years. That is,
many engineers don’t know that the feature even exists in the language, and are unaware of how
to use it. An engineer who had been using Verilog for a number of years recently attended a
Verilog training class with his team. When the section on event data types and usage was
presented, the engineer asked if this was something new with SystemVerilog. The answer was no,
that it has been in the language since the beginning. To this, the veteran Verilog engineer replied,
“Why hasn’t anyone told me about this before?”

The second, and more significant, gotcha is that there can easily be simulation race conditions
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with Verilog’s event triggering. The following code demonstrates this race condition.
module event_example1;

event get_data, send_data; // handshaking flags

initial -> get_data; // trigger get_data event at time zero

always @(get_data) begin // wait for a get_data event
... // do code to get data
... // when done, trigger send_data
-> send_data; // sync with send_data process

end

always @(send_data) begin // wait for a send_data event
... // do code to send data
... // when done, trigger get_data
-> get_data; // sync with get_data process

end
endmodule 

In this simple example, the two always blocks model simple behavioral handshaking using event
data type to signal the completion of one block and enabling the other. The initial block is used
to start the handshaking sequence. 

The gotcha lies in the fact that, at simulation time zero, each of the procedural blocks must be
activated. If the initial block activates and executes before the always @(get_data) block
activates, then the sequence will never start.

How to avoid this gotcha: In Verilog, the only way to solve this issue is to delay the trigger in the
initial block from occurring until all the procedure blocks have been activated. This is done by
preceding the statement with a delay, as shown in the code below.

initial #0 -> get_data; // start handshaking at time 0, but after all
// procedural blocks have been activated

Using the #0 delay will hold off triggering the get_data event until all the procedure blocks have
been activated. This ensures that the always @(get_data) block will sense the start of a
handshake sequence at time zero. 

But, using #0 is another gotcha! The Verilog #0 construct is an easily abused construct, and does
not truly ensure the delayed statement will execute after all other statements in a given time step.
Many Verilog trainers have recommended that #0 should never be used. There are alternatives
based on the nonblocking assignments that have more reliable and predictable event ordering. Not
using #0 is a good guideline, except for event data types. In Verilog, there is no way to defer the
event triggering to the nonblocking event queue. 

SystemVerilog comes to the rescue with two solutions that will remove the event trigger race
condition, and remove the need to use a #0. 

How to avoid this gotcha, solution 1: SystemVerilog defines a nonblocking event trigger, ->>,
that will schedule the event to trigger in the nonblocking queue. For the example in this section,
this eliminates the race condition at time zero, and eliminates the need for a #0 delay. Triggering
the get_data event in the nonblocking queue allows for the always procedure blocks to become
active before the event is triggered. 
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initial ->> get_data; // start handshaking at time 0 nonblocking queue,
// after all procedural blocks have been activated

How to avoid this gotcha, solution 2: SystemVerilog provides a second approach that will provide
a solution to many more situations than the simple example shown in this section. This second
solution uses a trigger persistence property that will make the trigger visible through the entire
time step, and not just in the instantaneous moment that the event was triggered.

module event_example2 ( ... );

event get_data, send_data; // handshaking flags

initial -> get_data; // trigger get_data event at time zero

always begin
wait(get_data.triggered) // wait for a get_data event
... // do code to get data
... // when done, trigger send_data
-> send_data; // sync with send_data process

end

always @(send_data) begin // wait for a send_data event
// could have used wait(send_data.triggered) here also, but it is not
//   needed since there is no race condition between the two always
//   blocks
... // do code to send data
... // when done, trigger get_data
-> get_data; // sync with get_data process

end
endmodule 

The wait (get_data.triggered) returns true in the time step in which get_data is triggered. It
does not matter if the trigger event occurs before or after the wait statement is activated. So, in
the above example, if the initial block activates and executes before the first always block, the
trigger persistence will still be visible when the first always block becomes active and executes
the wait (get_data.triggered) statement.

7.3 Using semaphores for synchronization 

Gotcha: Semaphore keys can be added to a bucket without having first obtained those keys. 

Gotcha: Semaphore keys can be obtained without waiting for prior requests to be serviced. 

The Verilog event data types have been used for years as a means to synchronize procedural
blocks. But, this method of procedural handshaking and communication is too limiting for
modern, object-oriented verification methodologies. SystemVerilog provides two additional inter-
process synchronization mechanisms that provide more flexibility and versatility than simple
event triggering provides. These mechanisms are semaphores and mailboxes. Both of these new
synchronization methods have subtle behaviors that must be considered and worked with when
being used. This section describes the gotchas involving semaphores. Section 7.4, which follows,
describes the gotchas involving mailboxes. 
SNUG Boston 2006 56 Standard Gotchas in Verilog and SystemVerilog



Semaphores are like a bucket that can hold a number of keys or tokens. Methods are available to
put any number of keys into the bucket and to get any number of keys out of the bucket. The
put() method is straight forward. The number specified as an argument to put() is the number of
keys placed in the bucket. 

One gotcha is that any number of keys can be placed into the bucket, regardless of how many
were retrieved from the bucket. Thus, incorrect code can keep adding more keys to the bucket
than were retrieved from the bucket. Indeed, a process can add keys to the bucket without having
retrieved any keys at all.

How to avoid this gotcha: This gotcha has to be managed by understanding how the semaphore
get() and put() methods work, and using them properly. 

A second gotcha occurs when a process has to wait for keys. Keys can be retrieved from the
bucket by using the get() method. The get() method is blocking. If the number of keys
requested is not available, the process suspends execution until that number of keys is available. 

The get() method has a subtle, non-intuitive gotcha. If the number of keys requested is not
available, then the request is put into a FIFO queue and will wait until the number of keys
becomes available. If more than one process requests keys that are not available, the requests are
queued in the order received. When keys become available, the requests in the queue are serviced
in the order in which the requests were received, First In, First Out. The gotcha is that, when
get() is called (a new request), an attempt will be immediately made to retrieve the requested
keys, without first putting the request into the FIFO queue. Thus, a new request for keys can be
serviced, even if other requests are waiting in the semaphore request queue. The following
example demonstrates this gotcha.

module sema4_example ( ... );

semaphore queue_test = new; // create a semaphore bucket

initial begin: Block1 // at simulation time zero...
queue_test.put(5); // bucket has 5 keys added to it
queue_test.get(3); // bucket has 2 keys left
queue_test.get(4); // get(4) cannot be serviced because the 

// bucket only has 2 keys; therefore the
// request is put in the FIFO queue

$display(“Block1 completed at time %0d”, $time);
end: Block1

initial begin: Block2 #10 // at simulation time 10...
queue_test.get(2); // GOTCHA! Even though the get(4) came 

// first, and is waiting in the FIFO
// queue, get(2) will be serviced first

queue_test.get(1); // this request will be put on the fifo 
// queue because the bucket is empty; 
// it will not be serviced until the 
// get(4) is serviced

$display(“Block2 completed at time %0d”, $time);
end: Block2

initial begin: Block3 #20 // at simulation time 20...
queue_test.put(3); // nothing is run from the fifo queue 

// since get(4)is first in the queue
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#10 // at simulation time 30...
queue_test.put(2); // get(4) and get(1) can now be serviced,

// in the order in which they were
// placed in the queue

$display(“Block3 completed at time %0d”, $time);
end: Block3

endmodule 

When a get() method is called and there are enough keys in the bucket to fill the request, it will
be retrieve the requested keys immediately, even if there are previous get() requests waiting in
the FIFO queue for keys. In the example above, the Block1 process begins execution at
simulation time 0. It executes until get(4) is called. At that time, there are only 2 keys available.
Since the request could not be filled, it is put on the queue. The execution of Block1 is then
suspended until 4 keys are retrieved.

Next, a separate process, Block2 requests 2 keys at simulation time 10. The get(2) executes and
retrieves the 2 remaining keys from the bucket immediately, even though there is the get(4) in
the queue waiting to be serviced. The process then executes a get(1). The request cannot be
serviced because the bucket is now empty, and therefore is put on the queue. 

At simulation time 30, the Block3 process puts three keys back in the semaphore bucket. The
get(4) request sitting in the FIFO queue still cannot be serviced, because there are not enough
keys available. There is also a get(1) request in the queue, but is not serviced because that
request was received after the get(4) request. Once placed on the queue, the get() requests are
serviced in the order which they were received. The get(4) must be serviced first, then the
get(1).

How to avoid this gotcha: This gotcha of having a get() request serviced immediately, even
when other get() requests are waiting in the FIFO queue, can be avoided, if the get() requests
are restricted to getting just one key at a time. If a process needs more then one key, then it would
need to call get(1) multiple times. When the process is done, it could return multiple keys with a
single put(). It is not necessary to call put(1) multiple times.

7.4 Using mailboxes for synchronization 

Gotcha: Run-time errors occur if an attempt is made to read the wrong data type from a mailbox. 

A second inter-process synchronization capability in SystemVerilog is mailboxes. Mailboxes
provide a mechanism for both process synchronization and the passage of information between
processes. By default, mailboxes are typeless, which means that messages of any data type can be
put into the mailbox. The gotcha is that, when messages are retrieved from the mailbox with the
get() method, the receiving variable must be the same data type as the value placed in the
mailbox. If the receiving variable is a different type, then a run time error will be generated.

How to avoid this gotcha: There are three ways of avoiding this gotcha. First is the brute force
method of managing the data types manually. The manual approach is error prone. It places a
burden on the verification engineers to track what type of data was put in the mailbox, and in what
order, so that the correct types are retrieved from the mailbox.

The second approach is to use the try_get() method instead of the get() method. The
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try_get() method retrieves the message via an argument passed to try_get(), and returns a
status flag. One of three status flags are returned:
• Returns 1 if the message and the receiving variable are type compatible, and the message is

retrieved.
• Returns -1 if the message and the receiving variable are type incompatible, in which case the

message is not retrieved.
• Returns 0 if there is no message in the mailbox to retrieve.

The return value of try_get() can be processed by conditional statements to determine the next
verification action. The following example illustrates using a typeless mailbox and the put(),
get() and try_get() methods.

module mbox_example1 ( ... );
logic [15:0] a, b;
int i, j, s;
struct packed {int u, v, w;} d_in, d_out;

mailbox mbox1 = new; // typeless mailbox

initial begin
mbox1.put(a); // OK: messages of any data type can be put into mbox1
mbox1.put(i); // OK: messages of any data type can be put into mbox1
mbox1.put(d_in); // OK: messages of any data type can be put into mbox1

mbox1.get(b); // OK: data type matches first message type in mbox1
mbox1.get(b); // ERROR: b is wrong type for next message in mbox1
s = mbox1.try_get(d_out); // must check status to see if OK
case (s)

1: $display(“try_get() succeeded”);
-1: $display(“try_get() failed due to type error”);
0: $display(“try_get() failed due to no message in mailbox”);

endcase
end

endmodule

The third approach to avoiding a mailbox run-time error gotcha is to use typed mailboxes. These
mailboxes have a fixed storage type. The tool compiler or elaborater will give a compilation or
elaboration error if the code attempts to place any messages with incompatible data types into the
mailbox. The get() method can be safely used, because it is known before hand what data type
will be in the mailbox.

The next example illustrates declaring a typed mailbox.
typedef struct {int a, b} data_packet_t;

mailbox #(data_packet_t) mbox2 = new; // typed mailbox

With this typed mailbox example, only messages of data type data_packet_t can be put into
mbox2. If an argument to the put() method is any other type, a compilation or elaboration error
will occur.

7.5 Coverage reporting

Gotcha: get_coverage() and get_inst_coverage() do not break down coverage to individual bins. 
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SystemVerilog provides powerful functional coverage for design verification. As part of
functional coverage, verification engineers define covergroups. A covergroup encapsulates one or
more definitions of coverpoints and crosscover points. A coverpoint is used to divide the
covergroup into one or more bins, where each bin includes specific expressions within the design,
and specific ranges of values for those expressions. Cross coverage specifies coverage of
combinations of cover bins. An example covergroup definition is:

enum {s1,s2,s3,s4,s5} state, next_state;

covergroup cSM @(posedge clk);
coverpoint state {

bins state1 = (s1);
bins state2 = (s2);
bins state3 = (s3);
bins state4 = (s4);
bins state5 = (s5);
bins st1_3_5 = (s1=>s3=>s5);
bins st5_1 = (s5=>s1);

}    
endgroup

These covergroup bins will count the number of times each state of a state machine was entered,
as well as the number of times certain state transition sequences occurred.

SystemVerilog also provides built-in methods for reporting coverage. It seems intuitive for
coverage reports to list coverage by the individual bins within a covergroup. GOTCHA! 

When the SystemVerilog get_inst_coverage() method is called to compute coverage for an
instance of a covergroup, the coverage value returned is based on all the coverpoints and
crosspoints of the instance of that covergroup. 

When the SystemVerilog get_coverage() method is called, the computed coverage is based on
data from all the instances of the given covergroup. 

The gotcha with coverage reporting is that coverage is based on crosspoints or coverpoints. There
are no built in methods to report details of individual bins of a crosspoint. If the coverage is not
100%, the designer has no way to tell which bins are empty.

How to avoid this gotcha: If the coverage details for each bin are needed, then each covergroup
should have just one coverpoint, and that coverpoint should have just one bin. Then, when the
coverage is reported for that cover group, it represents the coverage for the coverpoint bin.

7.6 $unit declarations

Gotcha: $unit declarations can be scattered throughout multiple source code files. 

$unit is a declaration space that is visible to all design units that are compiled together. The
purpose of $unit is to provide a place where design and verification engineers can place shared
definitions and declarations. Any user-defined type definition, task defintion, function definition,
parameter declaration or variable declaration that is not placed inside a module, interface, test
program, or package is automatically placed in $unit. For all practical purposes, $unit can be
considered to be a predefined package name that is automatically wildcard imported into all
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modeling blocks. All declarations in $unit are visible without having to specifically reference
$unit. Declarations in $unit can also be explicitly referenced using the package scope resolution
operator. This can be necessary if an identifier exists in multiple packages. An example of an
explicit reference to $unit is:

typedef enum logic [1:0] {RESET, WAITE, LOAD, READY} states_t; // in $unit

module chip (...);
...
$unit::states_t state, next_state; // get states_t definition from $unit

A gotcha with $unit is that these shared definitions and declarations can be scattered throughout
multiple source code files, and can be at the beginning or end of a file. At best, this is an
unstructured, spaghetti-code modeling style, that can lead to design and verification code that is
difficult to debug, difficult to maintain, and nearly impossible to reuse. Worse, is that $unit
definitions and declarations scattered across multiple files can result in name resolution conflicts.
Say, for example, that a design has a $unit definition of an enumerated type containing the label
RESET. By itself, the design may compile just fine. But, then, let’s say an IP model is added to the
design that also contains a $unit definition of an enumerated type containing a label called
RESET. The IP model also compiles just fine by itself, but, when the design files, with their $unit
declarations are compiled along with the IP model file, with its $unit declarations, there is a
name conflict. There are now two definitions in the same name space trying to reserve the label
RESET. GOTCHA! 

How to avoid this gotcha: Use packages for shared declarations, instead of $unit. Packages
serves as containers for shared definitions and declarations, preventing inadvertent spaghetti
code. Packages also have their own name space, which will not collide with definitions in other
packages. There can still be name collision problems if two packages are wildcard imported into
the same name space. This can be prevented by using explicit package imports and/or explicit
package references, instead of wildcard imports (see Section 2.6 for examples of wildcard and
explicit imports).

7.7 Compiling $unit 

Gotcha: Separate file compilation may not see the same $unit declarations as multi-file
compilation. 

A related, and major gotcha, with $unit is that multi-file compilation and separate file
compilation might not see the same $unit definitions. The $unit declaration space is a pseudo-
global space. All files that are compiled together share a single $unit space, and thus declarations
made in one file are visible, and can be used in another file. This can be a useful feature. A user-
defined type definition can be defined in one place, and that definition can be used by any number
of modules, interfaces or test programs. If the definition is changed during the design process (as
if that ever happens!), then all design blocks that reference that shared definition automatically
see the change. On the other hand, a software tool that can compile each file separately, such as
DC, will see a separate, and different, $unit each time the compiler is invoked. If some $unit
definitions are made in one file, they will not be visible to another file that is compiled separately.

Synopsys VCS, Formality and Magellan are multi-file compilers. DC and LEDA are separate file
compilers. If $unit declarations are scattered between multiple files, and the files are not
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compiled together, then DC and LEDA will not see the same $unit declarations as VCS,
formality and Magellan.

How to avoid this gotcha: The gotcha of different tools seeing different $unit declarations can
easily be avoided by using packages instead of $unit. Packages provide the same advantages of
shared definitions and declarations, but in a more structured coding style. If $unit is used, then a
good style is to ensure that all $unit definitions and declarations are made in one, and only one
file. That file must then always be compiled with any file or files that use those declarations.
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