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ABSTRACT

What do you get when merge the Verilog HDL (Hardware Description Language) and the VERA
HVL (Hardware Verification Language) together? You get SystemVerilog, the first full HDVL, or
Hardware Description and Verification Language!

SystemVerilog is an extensive set of enhancements to the IEEE 1364 Verilog-2001 standard.
These enhancements provide powerful new capabilities for modeling hardware at the RTL and
system level, along with a rich set of new features for verifying model functionality. In his
keynote address at the SNUG-Boston conference in September 2002, Synopsys CEO Aart De
Geus stated that Synopsys is fully behind SystemVerilog, and will support these significant HDL
and HVL language enhancements in VCS, Design Compiler, and other applicable Synopsys tools.

This paper presents an overview of the features in the released SystemVerilog 3.0 standard, and
looks ahead at what is expected to be in the SystemVerilog 3.1 standard, which is planned for
release in June 2003. The paper also presents Synopsys’s plans to support SystemVerilog for
simulation and synthesis. The primary objectives of this paper are to show the significant
advantages of this novel HDVL approach, and to show that engineers can immediately utilize
much of the capabilities of SystemVerilog using Synopsys tools.
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1.0 Introduction

For many years, the behavioral coding features of Verilog, plus a few extras such as display
statements and file I/O, gave Verilog-based hardware design engineers all they needed to both
model hardware and to define a test bench to verify the model. As design sizes have increased,
however, the amount of verification required has escalated dramatically. While writing the test
bench and verification routines in pure Verilog HDL is still possible, the amount of coding far
exceeds what can be accomplished in a reasonable amount of time. So along came proprietary
Hardware Verification Languages (HVLs) such as VERA to the rescue. These languages
specialized in giving verification engineers powerful constructs to describe stimulus and verify
functionality in a much more concise manner. These proprietary languages solve a need, but at the
costs of requiring engineers to learn and work with multiple languages, and often at the expense
of simulation performance. Having different languages for the hardware modeling and the
hardware verification has also become a barrier between those engineers doing the design work
and those doing the verification. They don’t speak the same language.

Enter the SystemVerilog standard currently being defined by Accellera. To provide Verilog
designers with greater capability, at a faster pace, Accellera—the combined VHDL International
and Open Verilog International organizations—has defined a set of high-level extensions to the
IEEE 1364 Verilog-20011,2 language, known as SystemVerilog. These extensions provide
powerful enhancements to Verilog, such as structures, interfaces, assertions, and much more.

Accellera plans to donate the SystemVerilog standard to the IEEE 1364 Verilog Standards Group.
It is expected that the SystemVerilog extensions will become part of the next generation of the
IEEE 1364 Verilog standard.

The SystemVerilog standard is being released in multiple phases:

• The SystemVerilog 3.0 standard, released in June 2002, added a large number of extensions to
the Verilog-2001 HDL. These extensions primarily addressed the needs of hardware modeling
for large, system-level designs and IP designs. 

• SystemVerilog 3.1 primarily targets the needs of verification engineers, with another large set
of extensions to the Verilog-2001 HDL. This release is planned for June 2003.

• SystemVerilog 3.2 will continue to extend Verilog modeling and verification capabilities,
based on the evolving needs of design and verification engineers.

The combination of the Verilog-2001 standard and the SystemVerilog extensions creates a new
breed of hardware language—an HDVL, or Hardware Description and Verification Language. As
the “+=” operation in the title of this paper suggests, combining HDL and HVL capabilities into
one language results in even greater capabilities than just the merging of the individual languages.

2.0 An overview of SystemVerilog 3.0

This section of the paper presents an overview of the language features that make up
SystemVerilog 3.0, which were ratified by Accellera in June, 2002. The SystemVerilog 3.0
Language Reference Manual3 is publicly available from the Accellera web site
(www.accellera.org).
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As noted in the introduction, SystemVerilog 3.0 primarily extends the hardware modeling
capabilities of Verilog. These extensions bridge a communication gap between high-level system
architect engineers working in C, C++ or SystemC and hardware implementation engineers
working at the detailed RTL and gate level of hardware. SystemVerilog enables both groups of
engineers to communicate in the same language, and easily share their work without the need for
language translators.

SystemVerilog 3.0 began with donations of major portions of the SUPERLOG language by Co-
design5, and assertions work by Verplex and Intel (ForSpec). These donations were made in 2001.
The Accellera HDL+ subcommittee then met an average of twice monthly to standardize these
donations. A major part of this standardization effort has been to ensure that SystemVerilog is
fully compatible with the IEEE 1364-2001 Verilog standard. Members of the Accellera HDL+
technical subcommittee include experts in simulation engines, synthesis compilers, verification
methodologies, members of the IEEE Verilog Standards Group, and senior design and verification
engineers.

The following subsections provide a brief explanation of many of the enhancements to Verilog
provided with the SystemVerilog 3.0 standard.

2.1 Assertions

SystemVerilog 3.0 provides special language constructs to verify design behavior. An assertion is
a statement that a specific condition, or sequence of conditions, in a design is true. If the condition
or sequence is not true, the assertion statement will generate an error message. The message can
be a default message, or a user-defined message.

A SystemVerilog assertion can be “immediate” or “temporal”. Immediate assertions test for a
condition at current simulation time. Temporal assertions test for a condition, or sequence of
conditions, at a future time. The future time can be at a specific time, or within some range of
time. The following assertion example checks that in the FETCH state, request must be true
immediately, and grant must become true within the next three clock cycles. Should either
condition not occur, a default error message will be generated.

always @(State)
if (State == FETCH)

assert (request;[0:3];grant) @@(posedge clk);

SystemVerilog 3.0 provides a basic set of assertion capabilities. SystemVerilog 3.1 will add
several additional capabilities, which are presented later in this paper.

2.2 Interfaces

Verilog connects one module to another through module ports. This requires a detailed knowledge
of the intended hardware design, in order to define the specific ports of each module that makes
up the design. Several modules often have many of the same ports, requiring redundant port
definitions for each module. Every module connected to a PCI bus, for example, must have the
same ports defined.

SystemVerilog provides a new, high level of abstraction for module connections, called
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interfaces. An interface is defined independent from modules, between the keywords interface
and endinterface. Modules can use an interface the same as if it were a single port. In its
simplest form, an interface can be considered a bundle of wires. All the signals that make up a
PCI bus, for example, can be bundled together as an interface. Interfaces go beyond just
representing bundles of interconnecting signals. An interface can also include functionality that is
common to each module that uses the interface. In addition, an interface can include built-in
protocol checking. Common functionality and protocol checking is possible because
SystemVerilog interfaces can include parameters, constants, variables, structures, functions, tasks,
initial blocks, always blocks, and continuous assignments.

2.3 Global declarations and statements

SystemVerilog adds an implicit top-level hierarchy, called $root. Any declarations or statements
outside of a module boundary are in the $root space. All modules, anywhere in the design
hierarchy, can refer to names declared in $root. This allows global variables, functions and other
information to be declared, that are shared by all levels of hierarchy in the design.

2.4 Time unit and precision

In Verilog, time values are specified as a number, without any time unit. The Verilog standard
does not specify a default unit of time or time precision (where precision is the maximum number
of decimal places used in time values). The time units and precision are a property of each
module, set by the compiler directive ‘timescale. There is an inherent danger with compiler
directives, however, because they are dependent on source code order. If there are multiple
‘timescale directives in the source code, the last directive encountered before a module is
compiled determines the time units of the module. If a module is not preceded by a ‘timescale
directive, the time units and precision of that module become dependent on the order the source
code is compiled. This can potentially cause different simulation runs to have different results.

SystemVerilog adds two significant enhancements to control the time units of time values. First,
time values can have an explicit unit specified. The unit is one of s, ms, us, ns, ps or fs, for
seconds down to femtoseconds. The time unit is a suffix to the time value, and cannot be preceded
by a white space. For example:

forever #5ns clock = ~clock;

Second, SystemVerilog allows the time units and time precision to be specified with new
keywords, timeunit and timeprecision. These declarations can be specified within any
module, or globally, in the $root space.

2.5 Data types

Verilog provides hardware-centric net, reg and variable data types. These types represent 4-state
logic values, and are used to model and verify hardware behavior at a detailed level. The net data
types also have multiple strength levels and resolution functions for zero or multiple drivers of the
net. SystemVerilog adds several new data types to Verilog, which allow hardware to be modeled
at more abstract levels, using data types more intuitive to C programmers.
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• char — a 2-state signed variable, that is the same as the char data type in C. Note that the
char data type is typically 8-bits wide, but the C standard does not guarantee this size.

• byte — a 2-state signed variable, that is defined to be exactly 8 bits. 
• shortint — a 2-state signed variable, that is defined to be exactly 16 bits.
• int — a 2-state signed variable, that is similar to the int data type in C, but is defined to be

exactly 32 bits. 
• longint — a 2-state signed variable, that is defined to be exactly 64 bits, similar to the

longlong type in C. 
• bit — a 2-state unsigned data type of any vector width, that can be used in place of the Verilog

net or reg data type, but with some restrictions.
• logic — a 4-state unsigned data type of any vector width, that can be used in place of either a

Verilog net or reg data type, but with some restrictions. 
• shortreal — a 2-state single-precision floating-point variable, that is the same as the float

type in C. 
• void — represents no value, and can be specified as the return value of a function. 

The SystemVerilog bit, byte, int, shortint, and longint data types allow modeling designs
using 2-state logic, which can be more efficient for simulation performance. Since the Verilog
language does not have any 2-state data types, many simulators have provided the capability as an
option to the simulator. These options do not work the same on every simulator, however,
resulting in portability issues between different simulators. In addition, 2-state simulation modes
often have the side effect of forcing 2-state logic in regions of a design where 3-state or 4-state
logic is needed. The SystemVerilog 2-state data types can greatly improve simulation
performance, while still allowing 3-state or 4-state logic in the regions of a design where needed.
By using a data type with defined behavior instead of proprietary simulator options, models with
2-state logic are portable to all SystemVerilog simulators.

The SystemVerilog logic and bit data types are more versatile than the Verilog net and reg data
types, which makes it easier to model hardware at any level of abstraction. The logic and bit
types can receive a value any one of the following ways:

• Assigned values by any number of procedural assignment statements, replacing the reg type
• Assigned a value by a single continuous assignment statement, a restricted replacement for the

wire type
• Connected to the output of a single primitive or module, a restricted replacement for the wire

type

Since the logic and bit types can be used in place of either a Verilog reg or a wire (with
restrictions), they allow writing models at a high level of abstraction, and adding details to the
model as the design progresses, without having to change data type declarations. The logic and
bit data types do not represent strength levels and do not have resolution functions for wired
logic, which makes these types more efficient to simulate than the Verilog wire type.
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2.6 User defined types

SystemVerilog provides a method to define new data types using typedef, similar to C. The user-
defined type can then be used in declarations the same as with any data type. 

typedef unsigned int uint;
uint a, b;

2.7 Enumerated types

SystemVerilog allows the creation of enumerated types, using a C-like syntax. An enumerated
type has one of a set of named values. By default, the values increment from an initial value of 0,
but the initial value can also be explicitly specified. The enumerated type will have the same
vector size as the initial value.

enum {red, green, blue} RGB;
enum logic [2:0] {WAIT=3’b001, LOAD=3’b010, DONE=3’b100} states;

An enumerated type can be defined as a user-defined type, using typedef.

typedef enum {FALSE=1’b0, TRUE} boolean;
boolean ready;
boolean test_complete;

2.8 Structures and unions

SystemVerilog adds structures and unions, which allow multiple signals, of various data types, to
be bundled together and referenced by a single name.

struct {
bit [15:0] opcode;
logic [23:0] addr;

} IR;

union {
int i;
shortreal r;

} N;

User-defined types can be created from structures and unions, using typedef.

typedef struct {
bit [15:0] opcode;
logic [23:0] addr;

} instruction_t;

instruction_t IR;

Fields within a structure or union are referenced using a period between the structure or union
name and the field name, as in C.

IR.opcode = 1; //set the opcode field in IR
N.r = 0.0; //set N as floating point value
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A structure can be assigned as a whole, using a concatenation of values.

IR = {5, 200};

2.9 Module port connections

Verilog restricts the data types that may be connected to module ports to net types, and the
variable types reg, integer and time. SystemVerilog removes all restrictions on connections to
module ports. Any data type can be passed through ports, including reals, arrays and structures.
When different data types are connected across module ports, standard rules define how values
are coerced from one type to another. 

SystemVerilog allows any variable type to be passed through module output ports. To prevent
inadvertent wired-logic errors, SystemVerilog does not allow multiple outputs to be wired
together using variables. Verilog net types, which have wired logic resolution functions, must be
used to wire multiple outputs together.

2.10 Literal values

SystemVerilog adds the following enhancements to how literal values can be specified.

• All bits of a literal value can be filled with the same value using ‘0, ‘1, ‘z or ‘x. This allows a
vector of any size to filled, without having to explicitly specify the vector size of the literal
value.

bit [63:0] data;
data = ‘1; //set all bits of data to 1

• A string literal can be assigned to an array of characters. A null termination is added as in C. If
the size differs, it is left justified, as in C.

char foo [0:12] = “hello world\n”;

• Several special string characters have been added:
\v for vertical tab
\f for form feed 
\a for bell
\x02 for a hex number representing an ASCII character

• Arrays can be assigned literal values, using a syntax similar to C initializers, except that the
replicate operator is also allowed. The number of nested braces must exactly match the number
of dimensions (unlike C).

int n[1:2][1:3] = { {0,1,2}, {3{4}} };

2.11 Type casting 

SystemVerilog adds the ability to change the type of a value using a cast operation, represented by
<type>’. The cast can be to any type, including user-defined types.

int’(2.0 * 3.0) //cast result to int
mytype’(foo) //cast foo to the type of mytype
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A value can also be cast to a different vector size by specifying a decimal number before the cast
operation.

17’( x - 2) //cast the operation to 17 bits

The signedness of a value can also be cast.

signed'(x) //cast x to a signed value

2.12 Operators

SystemVerilog adds several new operators:

• ++ and -- increment and decrement operators
• +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=, <<<= and >>>= assignment operators

It is important to note that all these operators execute as Verilog blocking assignments. Care must
be taken to avoid potential simulation race conditions, as with any blocking assignment. A
general guideline is to avoid using these constructs in models representing sequential logic.

2.13 Unique and priority decision statements

The Verilog if–else and case statements can be a source of mismatches between RTL
simulation and how synthesis interprets an RTL model, if strict coding styles are not followed.
The synthesis full_case and parallel_case pragmas can lead to further mismatches if
improperly used.

SystemVerilog adds the ability to explicitly specify when each branch of a decision statement is
unique or requires priority evaluation. The keywords unique and priority can be specified
before the if or case keyword. These keywords can be used to instruct simulators, synthesis
compilers, and other tools the specific type of hardware intended. Tools can use this information
to check that the if or case statement properly models the desired logic. For example, if a
decision statement is qualified as unique, simulators can issue a warning message if an
unexpected case value is found.

bit [2:0] a;

unique case(a)
0, 1: y = in1;
2: y = in2;
4: y = in3;

endcase //values 3,5,6,7 will cause a warning

priority casez(a)
3'b00?: y = in1; // a is 0 or 1
3'b0??: y = in2; //a is 2 or 3;
default: y = in3; //a is any other value

endcase
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2.14 Bottom testing loop

Verilog has the for, while and repeat loops, all of which test to execute the loop at the
beginning of the loop. SystemVerilog adds a do–while loop, which tests the loop condition at the
end of executing code in the loop.

2.15 Jump statements

Verilog provides the ability to jump to the end of a statement group using the disable statement.
Using disable to carry out the functionality of break and continue requires adding block names,
and can create code that is non intuitive. SystemVerilog adds the C break and continue
keywords, which do not require the use of block names, and a return keyword, which can be
used to exit a task or function at any point.

• break — exits a loop, as in C
• continue — skips to the end of a loop, as in C
• return expression — exits a function
• return — exits a task or void function

SystemVerilog does not include the C goto statement.

2.16 Block names and statement labels

Verilog allows a begin–end or fork–join statement block to be named, by specifying the name
after the begin or fork keyword. The name represents the entire statement block. SystemVerilog
allows a matching block name to be specified after the block end or join keyword. This can help
document which end or join is associated with which begin or fork when there are long blocks
or nested blocks. The name at the end of the block is optional, and must match the name at the
beginning of the block.

begin: foo //block name is after the begin
...
fork: bar //nested block with a name

...
join: bar //name must be the same
...

end: foo //name must be same as block name

SystemVerilog also allows individual statements to be labeled, as in C. A statement label is placed
before the statement, and is used to identify just that statement.

initial begin
test1: read_enable = 0;

...
test2: for (i=0; i<=255; i++)

...
end



SNUG Europe 2003 11 HDVL += (HDL & HVL): SystemVerilog 3.1

2.17 New procedures

Verilog uses the always procedure as a general purpose construct to represent RTL models of
sequential logic, combinational logic and latched logic. The general purpose always procedure is
also used in test benches and code that is not intended to be synthesized. Synthesis and other
software tools must infer the intent of the always procedure from the context of the @ event
control at the beginning of the procedure (the “sensitivity list”) and the statements within the
procedure. This inference can lead to mismatches in simulation and synthesis results.

SystemVerilog adds three new procedures to explicitly indicate the intent of the logic: 

• always_ff — the procedure should represent sequential logic
• always_comb — the procedure should represent combinational logic 
• always_latch — the procedure should represent latched logic 

For example:

always_comb begin
if (sel) y = a;
else y = b;

end

Software tools can examine the event control sensitivity list and procedure contents to ensure that
the functionality matches the type of procedure. For example, a tool can infer that an
always_comb procedure must be sensitive to all external values read within the procedure. The
tool can also check that the procedure makes assignments to the same variables for every branch
of logic, and that the branches cover every possible condition. If either of these conditions are not
true, then a software tool can report that the procedure does not properly model the engineers
intent of combinational logic.

2.18 Task and function enhancements

SystemVerilog adds several enhancements to the Verilog task and function constructs.

Static and automatic storage: By default all storage within a Verilog task or function is static.
Verilog-2001 allows tasks and functions to be declared as automatic, making all storage within
the task or function automatic. With SystemVerilog:

• Specific data within a static task or function can be explicitly declared as automatic. Data
declared as automatic has the lifetime of the call, and is initialized on each entry to the task or
function call.

• Specific data within an automatic task or function can be explicitly declared as static. Data
declared to be static in an automatic task or function has a static lifetime but a scope local to
the task or function.

Return from any point: Verilog returns from a task or function when the execution reaches the
endtask or endfunction keyword. The return value of a function is the last value assigned to the
name of the function. SystemVerilog adds a return keyword, which allows a task or function to
exit at any point.
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Multiple statements: Verilog requires that a task or function have a single statement or statement
block. Multiple statements must be grouped into a single begin–end or fork–join block.
SystemVerilog removes the restriction of a single statement or block. Therefore, multiple
statements can be listed in a task or function without using begin–end or fork–join. Statements
that are not grouped will execute sequentially, as if within a begin–end. SystemVerilog also
allows a task or function definition with no statements.

Void functions: The Verilog language requires that a function have a return value, and that
function calls receive the return value. SystemVerilog adds a void data type, which can be
specified as the return type of a function. Void functions can be called the same as a Verilog task,
without receiving a return value. The difference between a void function and a task is that Verilog
functions have several semantic restrictions, such as no time controls.

Function inputs and outputs: The Verilog standard requires that a function have at least one
input, and that functions can only have inputs. SystemVerilog removes these restrictions.
Functions can have any number of inputs, outputs and inouts, including none.

2.19 Continuous assignment enhancements

In Verilog, the left-hand side of a continuous assignment can only be a net data type, such as wire.
The continuous assignment is considered a driver of the net. Nets can have any number of drivers.
SystemVerilog allows any variable data type to be used on the left hand side of a continuous
assignment. Unlike nets, however, all variable data types are restricted to being driven by a single
continuous assignment. It is illegal to mix continuous assignments and procedural assignments
(including initial assignments) for the same variable.

3.0 An overview of SystemVerilog 3.1

The focus of SystemVerilog 3.1 is to extend the verification capabilities of Verilog
(SystemVerilog 3.0 focussed on extending hardware modeling constructs). SystemVerilog 3.1 is
expected to be ratified by Accellera in June, 2003. The current draft of the SystemVerilog 3.1
Language Reference Manual6 is not publicly available at this time, as it is still being defined.

Note that all information in this section is subject to change. The SystemVerilog 3.1 standard is
still being developed. The constructs presented in this paper serve to illustrate the powerful
capabilities that SystemVerilog 3.1 will provide, but the final syntax of some constructs may be
different in the final, ratified version of SystemVerilog 3.1.

Accellera is defining SystemVerilog from proven technologies. Instead of re-inventing the wheel,
Accellera takes technology donations of propriety languages, and fine tunes the proprietary
capability to become an open standard. SystemVerilog 3.0 was based primarily on donations from
Co-design, Verplex and Novas. SystemVerilog 3.1 is based primarily on the following donations:

• The Synopsys VERA-Lite Hardware Verification Language
• The Synopsys VCS DirectC Application Programming Interface (API)
• The Synopsys Assertion Application Programming Interface (API)
• The IBM Property Specification Language (PSL) assertion technology (“Sugar”). 
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These donations, along with some internal proposals, make up the core of the Verilog language
enhancements that will be in SystemVerilog 3.1. The following subsections provide a more
detailed overview of these features.

3.1 Classes

SystemVerilog 3.1 adds Object Oriented classes to the Verilog language, similar to C++. A class
can contain data declarations, plus tasks and functions for operating on the data. Data declarations
are referred to as “properties”, and tasks/functions are referred to as “methods”. The properties
and methods together define the contents and capabilities of an “object”.

Classes allow objects to be dynamically created, deleted and assigned values. Objects can be
accessed via handles, which provide a safe form of pointers. Class objects can inherit properties
and methods from other classes, as in C++.

SystemVerilog does not require the complex memory allocation and de-allocation of C++.
Memory allocation, de-allocation and garbage collection are automatically handled. This prevents
the possibility of memory leaks.

An example of a SystemVerilog 3.1 object definition is:

class Packet ;
bit [3:0] command; // data portion
bit [39:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

function new(); // initialization
command = 4’hA;
address = 40’hFE;
master_id = 5’b0;

endfunction

task clean();
command = 4’h0; address = 40’h0;
master_id = 5’b0;

endtask
// public access entry points

task issue_request( int delay );
// send request to bus

endtask

function integer current_status();
current_status = status;

endfunction
endclass
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3.2 String data type

SystemVerilog 3.1 adds a string data type. This data type contains a variable length array of
ASCII characters. Each time a value is assigned to the string, the length of the array is
automatically adjusted. This eliminates the need for the user to define the size of character arrays,
or to be concerned about strings being truncated due to an array of an incorrect size.

String operations can be performed using standard Verilog operators: =, ==, !=, <, <=, >, >=, {,},
{{}}. In addition, a number of string class methods are defined, using SystemVerilog’s Object
Oriented classes: len(), putc(), getc(), toupper(), tolower(), compare(), icompare(),
substr(), atoi(), atohex(), atooct(), atobin(), atoreal(), itoa(), hextoa(), octtoa(),
bintoa() and realtoa().

3.3 Arrays

SystemVerilog 3.0 enhances Verilog arrays in several significant ways. SystemVerilog 3.1 adds
two important enhancements: dynamic arrays and associative arrays.

Dynamic arrays are one-dimensional arrays where the size of the array can be changed
dynamically. Object Oriented class methods provide a means to set and change the size of
dynamic arrays during run-time.

Associative arrays are one-dimensional arrays that can be indexed using enumerated type names.
Associative arrays are sparse arrays, meaning that storage for each element in the array is not
actually allocated until the location is accessed. SystemVerilog 3.1 also provides several class
methods for working with associative arrays: exists(), first(), last(), next(), prev() and
delete().

3.4 Enumerations

SystemVerilog 3.0 adds enumerated types to the Verilog language. Enumerated types are strongly
typed. An enumerated type can only be assigned a value from its type set. Operations on
enumerated types are limited. For example, it is illegal to increment an enumerated type, so a state
machine model with an enumerated type called State cannot advance to the next state using
State++. The SystemVerilog 3.0 cast operator can be used with enumerated types, so it is
possible to do operations such as State = State_t’(State + 1). However, the cast operator
can only perform compile time checking. It cannot perform run-time checking that the result of an
operation such as adding 1 to an enumerated type will result in a valid value in the enumerated
type set.

SystemVerilog 3.1 will extend enumerated types by providing a set of class methods to perform
operations such as incrementing to the next value in the enumerated type set. In addition,
SystemVerilog 3.1 adds a dynamic cast system function, called $cast. Dynamic casting can
perform run-time checking, and verify that, for example, State = $cast(State + 1) will result
in a legal value in the State enumerated type set.

3.5 Tasks and functions

SystemVerilog 3.0 added several enhancements to Verilog tasks and functions, as discussed
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earlier in this paper. SystemVerilog 3.1 adds additional enhancements.

Passing arguments by name. Verilog requires that a task or function call pass values in the order
of the task/function argument declarations. SystemVerilog 3.1 allows values to be passed in any
order, using the task/function argument names. The syntax is the same as named module port
connections. For example:

task t1 (input int a, b, output int c);
...

endtask

t1 (.c(out), .a(in1), .b(in2));

Default argument values. Task and function input arguments can be assigned a default value as
part of the task/function declaration. This allows the task or function to be called without passing
a value to each argument.

task t2 (input int a = 1, b = 1);

t2(); //a is 1, b is 1
t2( 3 ); //a is 3, b is 1
t2( , 4 ); //a is 1, b is 4
t2( 5, 8 ); //a is 5, b is 8

Passing arguments by reference. With SystemVerilog 3.1, a task or function argument can be
passed by reference, instead of copying the value in or out of the task or function. Passing by
reference allows the task or function to work directly with the value in the calling scope, instead
of a local copy of the value. To use pass by reference, the task or function argument must be
explicitly declared as a var, instead of an input, output or inout [note: at the time of this
writing, different keywords or tokens were being considered instead of using the VERA keyword
var].

int my_array [1023:0]; //an array of integers

task t3 (var int arg1 [1023:0]); //arg1 is a reference to calling scope

t3 (my_array); // task will use my_array directly, instead of copying it

Discarding function return values. The return value of a function can be discarded by assigning
the return to void. For example:

void = f1(...);

3.6 Enhanced for loops

Verilog for loops can have a single initial assignment statement, and a single step assignment
statement. SystemVerilog 3.1 enhances for loops to allow multiple initial and step assignments.

for (int count=0, done=0, shortint i=1; i*count < 125; i++, count+=3)
...
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3.7 Enhanced fork—join

In the Verilog fork—join statement block, each statement is a separate thread, that executes in
parallel with other threads within the block. The block itself does not complete until every parallel
thread has completed. Therefore, any statements following a fork—join are blocked from
execution until all the forked parallel threads have completed execution.

SystemVerilog 3.1 adds significant new capabilities to the Verilog fork—join statement block,
using the modifiers join_none, and join_any, where:

• join_none — statements that follow the fork—join_none are not blocked from execution
while the parallel threads are executing. That is, each parallel thread is an independent,
dynamic process.

• join_any — statements which follow a fork—join_any are blocked from execution until any
thread has completed execution. That is, the join is blocked until the first thread completes.

SystemVerilog 3.1 also includes special system tasks to control the execution of parallel threads.

• $terminate causes all child processes that have been spawned by the calling process to
immediately exit execution.

• $wait_child causes the calling process to block its execution flow until all child processes
that have been spawned have completed.

• $suspend_thread causes the calling process to momentarily suspend execution. It is similar
to a #0 delay, except that the process is guaranteed to suspend until all pending non-blocking
assignments have been updated (#0 does not guarantee that behavior).

3.8 Inter-process synchronization

SystemVerilog 3.1 provides three powerful ways for synchronizing parallel activities within a
design and/or a test bench: semaphores, mailboxes, and enhanced event types.

A semaphore is a built-in Object-Oriented class. Semaphores serve as a bucket with a fixed
number of “keys”. Processes using semaphores must procure one or more keys from the bucket
before they can continue execution. When the process completes, it returns its keys to the bucket.
If no keys are available, the process must wait until a sufficient number of keys have been
returned to the bucket by other processes. The semaphore class provides several built-in methods
for working with semaphores: new(), get(), put() and try_get().

A mailbox is another built-in class. Mailboxes allow messages to be exchanged between
processes. A message can be added to the mailbox at anytime by one process, and retrieved
anytime later by another process. If there is no message in the mailbox when a process tries to
retrieve one, the process can either suspend execution and wait for a message, or continue and
check again at a later time. Mailboxes behave like FIFOs (First-In, First-Out). When the mailbox
is created, it can be defined to have a bounded (limited) size, or an unbounded size. If a process
tries to place a message into a bounded mailbox that is full, it will be suspended until there is
enough room. The mailbox class also provides several built-in methods: new(), put(),
tryput(), get(), peek(), try_get() and try_peek().
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SystemVerilog 3.1 adds several enhancements to the Verilog event data type. In Verilog, the
event type is a momentary semaphore that has no logic value and no duration. The event type
can be triggered, and other processes can be watching for the trigger. If a process is not watching
at the exact instance the event is triggered, the event will not be detected. SystemVerilog enhances
the event data type by allowing events to have persistence, so that the event can be checked after
the event is triggered. Special system tasks are provided to work with persistent events:
$wait_all(), $wait_any(), $wait_order() and $wait_var.

3.9 Random value constraints

The Verilog standard includes a very basic random number function, called $random. This
function, however, gives very little control over the random sequence and no control over the
range of the random numbers. SystemVerilog adds two random number classes, rand and randc,
using SystemVerilog’s Object Oriented class system. These classes provide methods to set seed
values and to specify various constraints on the random values that are generated. 

The following example creates a user-defined class called Bus, that can generate a random
address and data value, with limits on the value sizes. A constraint on the address ensures that the
lower two bits of random address value will always be zero. The class is then used to generate 50
random address/data value pairs, using the randomize() method, which is part of the rand class.

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;
constraint word_align { addr[1:0] == 2’b0; }

endclass

//Generate 50 random data values with quad-aligned addresses
Bus bus = new;
repeat(50)

begin
integer result = bus.randomize();

end

Using the rand and randc classes and methods, much more elaborate random number generation
is possible than what is shown in the preceding simple example.

3.10 Test bench program block

In Verilog the test bench for a design must be modelled using Verilog hardware modeling
constructs. Since these constructs were primarily intended for model hardware behavior at various
levels of abstraction, they have no special semantics to indicate how test values should be applied
to the hardware. SystemVerilog 3.1 adds a special type of code block, declared between the
keywords program and endprogram. The program block has special semantics and syntax
restrictions to meet the needs of modeling a test bench. A program block:

• Has a single implicit initial block
• Executes events in a “verification phase” appropriately synchronized to hardware simulation

events
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• Can use a special $exit system task that will wait to exit simulation until after all program
blocks have completed execution (unlike $finish, which exits simulation immediately, even if
there are pending events)

A program block can have ports, just like Verilog modules. One or more program blocks can be
instantiated in a top-level netlist, and connected to the design under test.

3.11 Clocking domain

SystemVerilog adds a special clocking block, using the keywords clocking and endclocking.
The clocking block identifies a “clocking domain”, containing a clock signal and the timing and
synchronization requirements of the blocks in which the clock is used. A test bench may contain
one or more clocking domains, each containing its own clock plus an arbitrary number of signals.
Clocking domains allow the test bench to be defined using a cycle-based methodology of cycles
and transactions, rather than the traditional event-based methodology of defining specific
transition times for each test signal.

Clocking domains greatly simplify defining a test bench that does not have race conditions with
the design being tested. One common source of race conditions is when the test bench reads
design values on the same clock edge in which the design may be changing values. Conversely,
applying new stimulus on the same clock edge in which the design reads those values can result in
race conditions. Using standard Verilog, the following example may have race conditions,
resulting in unpredictable simulation results. 

initial //Race conditions with Verilog; no races with SystemVerilog
begin

@(posedge clk) input_vector = ... //drive stimulus onto design
@(posedge clk) $display(chip_output); //sample result

input_vector = ... //drive stimulus onto design
@(posedge clk) $display(chip_output); //sample result

input_vector = ... //drive stimulus onto design
end

To avoid these races between sampling values and values changing on the same clock edge using
standard Verilog, it is necessary to calculate a time shortly before the clock edge at which to
sample values. Since it is not possible to go backwards in time, it is not possible simply to do the
sampling using, for example @(posedge clock - 2). Instead, special events must be scheduled
prior to the next clock edge. A delay must also be added after each clock edge before driving a
new test value. For example:

initial //Work around to avoid races with Verilog
begin

@(posedge clk) #1 input_vector = ... //drive stimulus onto design
#(clk_period - 2) $display(chip_output); //sample result
@(posedge clk) #1 input_vector = ... //drive stimulus onto design
#(clk_period - 2) $display(chip_output); //sample result
@(posedge clk) #1 input_vector = ... //drive stimulus onto design

end

A clocking domain can define detailed skew information for the relationship between a clock and
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one or more signals. Input skews specify the amount of time before a clock edge that input signals
should be sampled by a test bench. Output skews specify how many time units after a clock edge
outputs should be driven. Note that “input” and “output” are relative to the test bench—that is, an
output of the design under test is an input to the test bench. For example:

clocking bus @(posedge clk);
default input #2ns output #1ns; //default I/O skew
input enable, full;
inout data;
output empty;
output #6ns reset; //reset skew is different than default

endclocking

Using clocking domain skews, the test bench itself can simply reference a clock edge to sample a
value or drive stimulus, as is shown in the first example in this subsection. The appropriate skew
will automatically be applied, thus avoiding race conditions with the design.

3.12 Assertion extensions

The additional PSL (“Sugar”) assertion donation adds significant capabilities to the existing
SystemVerilog 3.0 assertions. PSL allows the same assertions to be used by a variety of EDA
tools including simulation and formal verification. The Accellera SystemVerilog subcommittee
for assertions has worked to closely integrate the features of Sugar, OVA and the existing
SystemVerilog assertions. The result is a single assertion language, instead of several competing
languages, that provides a convergence of all the best features of each of these assertion
methodologies. This best-of-the-best convergence is tightly integrated in the SystemVerilog
language. Since SystemVerilog is an extension to Verilog-2001, all of this assertion capability is
fully compatible with existing Verilog models. SystemVerilog 3.1 assertions provide consistent
results between simulation and formal verification.

One important capability that SystemVerilog 3.1 adds to SystemVerilog 3.0 is the ability to define
assertions outside of Verilog modules, and then bind them to a specific module or module
instance. This allows test engineers to add assertions to existing Verilog models, without having
to change the model in any way.

At the time of this writing, the semantics and capabilities for SystemVerilog 3.1 assertions had
been defined, but the specific syntax was still being specified. Therefore, no examples are
included in this paper.

3.13 Direct foreign language interface

SystemVerilog 3.1 will provide a means for SystemVerilog code to directly call functions written
in another language (primarily C and C++), without having to use the Verilog Programming
Language Interface (PLI). Verilog and SystemVerilog values can be passed directly to the foreign
language function, and values can be received from the function. The foreign language function
will also be able to call Verilog tasks and functions, which gives the foreign language functions
access to simulation events and simulation time. This significantly improves the “bridge” that
SystemVerilog provides between high-level system design and lower-level RTL and gate-level
hardware design.
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The SystemVerilog Direct Foreign Language Interface is based on the “DirectC” donation from
Synopsys. The SystemVerilog standard subcommittee over this donation has carefully reviewed
and extended this donation to provide an efficient and versatile interface between Verilog and C/
C++.

3.14 Assertion API

SystemVerilog 3.1 will also include an Application Programming Interface (API) for assertions.
This will extend the Verilog VPI routines to access to assertions, and enable external programs to
find and read assertion statements anywhere in the design hierarchy. The external program will be
able to enable or disable an assertion. The API will also provide a means to invoke an external
program whenever an assertion triggers or an assertion fails or as an assertion steps through a
sequence of events.

4.0 Synopsys support for SystemVerilog

Synopsys is taking a leading role in the EDA industry for implementing the SystemVerilog
standard. The company has recognized the urgent need hardware modelers and verification
engineers have for greater capability in the Verilog language. Synopsys is aggressively making
the SystemVerilog extensions to Verilog available for engineers to use in today’s design and
verification projects.

Current company plans6 call for the Synopsys VCS simulator to support SystemVerilog 3.0 in
version 7.0, due for release in March of 2003. This version is currently undergoing beta testing at
a few customer sites. SystemVerilog 3.1 will be supported later in the year within VCS, pending
ratification by Accellera. The Synopsys Design Compiler synthesis product is planning a limited
beta release with SystemVerilog 3.0 support for key partners before the middle of 2003, with full
support to follow. Support of SystemVerilog in other Synopsys products is also being planned.

5.0 Conclusion

SystemVerilog provides a major set of extensions to the Verilog-2001 standard. These extensions
allow modeling and verifying very large designs more easily and with less coding. By taking a
proactive role in extending the Verilog language, Accellera is providing a standard that can be
implemented by simulator and synthesis companies quickly, without waiting for the protracted
IEEE standardization process. It is expected that the IEEE Verilog standards group will adopt the
SystemVerilog extensions as part of the next generation of the IEEE 1364 Verilog standard.

The SystemVerilog extensions create a whole new type of engineering language, an HDVL, or
Hardware Description and Verification Language. This unified language will greatly increase the
ability to model huge designs, and verify that these designs are functionally correct.

SystemVerilog 3.0 extends the modeling aspects of Verilog. It bridges the gap between hardware
design engineers and system design engineers, allowing both teams to work in a common
language. SystemVerilog 3.0 is a released Accellera standard. At the time this paper was written,
SystemVerilog 3.0 was supported in the beta version of the Synopsys VCS 7.0 simulator, with
plans for synthesis support in Design Compiler around mid 2003.
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SystemVerilog 3.1 extends the verification aspects of Verilog, and will be released as a standard in
June 2003. SystemVerilog 3.1 incorporates the capabilities of VERA-light and enhanced PSL
(Sugar) assertions. This release also incorporates a DirectC-like interface, allowing C, C++,
SystemC and Verilog code to work together without the overhead of the Verilog PLI. This
capability completes the bridge between high-level system design and low-level hardware design.
It is expected that the Synopsys VCS simulator and DC synthesis compiler will begin supporting
SystemVerilog 3.1 standard later in 2003.
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