
Don Mills

Being Assertive With Your X
(SystemVerilog Assertions for Dummies:

 version 2013)

Microchip Technology Inc,

Chandler, AZ, USA

don.mills@microchip.com

mills@lcdm-eng.com

Don Mills

Outline

 The Origin of X
 The Big Lie - If you don’t see it, it isn’t there.
 The Old-Fashioned solution
 The tool kludge being promoted today
 Using SystemVerilog assertions to seek out

your X
 SystemVerilog assertion bind
 Conclusions and Recommendations
 Mentor’s Best Kept Secret

2 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

Don Mills

The Origin of X

 Uninitialized Variables
 (4-state types)

 Flip-flop data path
chain
— Follower Flops
— Uninitialized flops and

latches

 Multiple drivers on a
wire
— without a tri-state

driver

 Direct X assignment
 Undriven wires

3 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

 Floating input ports
 Gate level X’s

— timing violations
— UDP

 UPF – low power
mode

 Out of range bit-
selects and indices

Don Mills

 Designers focus on functionality
 Seldom is RTL coded with integrity

checkers
 Code that blocks or hides X’s :
 if/else statements
 case/casez/casex/case inside statements
 combinational logic

 and/or logic
 ternary operator “ ? : ”

The Big Lie

4 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

Don Mills

 One of the most common X-hiding
statement is an if/else statement

if/else statements X-hiding

5 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

The if will be true if sel is
true (1’b1)

The else condition will
execute for all other values
of sel

(1’b0, 1’bX, 1’bZ)

The if will be true if sel is
true (1’b1)

The else condition will
execute for all other values
of sel

(1’b0, 1’bX, 1’bZ)

always_comb begin
 if (sel)
 out = a;
 else
 out = b;
end

always_comb begin
 if (sel)
 out = a;
 else
 out = b;
end

Don Mills

 For standard case statements (NOT
casez, casex, or case inside)

case statements X-hiding

6 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

 logic [1:0] sel;
 logic a, b, c, d, out;

 always_comb
 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 2'b11 : out = d;
 endcase

 logic [1:0] sel;
 logic a, b, c, d, out;

 always_comb
 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 2'b11 : out = d;
 endcase

when the case expression
has an 1’bX (or a 1’bZ) it’s
value will be lost and the
case statement will hold it’s
previous value

when the case expression
has an 1’bX (or a 1’bZ) it’s
value will be lost and the
case statement will hold it’s
previous value

Don Mills

When the case expression
has an 1’bX (or a 1’bZ) it
will be treated as a don’t
care for casex and casez.

When the case items have
X’s or Z’s they will be
treated as don’t cares for
casex, casez, case inside.

(lots of SV rules not
discussed here)

When the case expression
has an 1’bX (or a 1’bZ) it
will be treated as a don’t
care for casex and casez.

When the case items have
X’s or Z’s they will be
treated as don’t cares for
casex, casez, case inside.

(lots of SV rules not
discussed here)

 casex, casez, case inside statements
apply “don’t-care” mapping to X’s and
Z’s.

casex, casez, case inside
statements X-hiding

7 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

 logic [1:0] sel;
 logic a, b, c, d, out;

 always_comb
 casex (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b1X : out = c;
 2'bZ1 : out = d;
 endcase

 logic [1:0] sel;
 logic a, b, c, d, out;

 always_comb
 casex (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b1X : out = c;
 2'bZ1 : out = d;
 endcase

Don Mills
if / else vs. conditional
operator for X-
propagation

always_comb begin
 if (sel)
 out = a;
 else
 out = b;
end

 Many use the conditional operator
(thinking it will always propagate X’s)
– wrong!

assign out = sel ? a : b;
 OR
always_comb
 out = sel ? a : b;

sel a b out
0 dead beef dead
1 dead beef beef
X dead beef xexx

X dead dead dead

sel a b out
0 dead beef dead
1 dead beef beef
X dead beef xexx

X dead dead dead

sel a b out
0 dead beef dead
1 dead beef beef
X dead beef beef

sel a b out
0 dead beef dead
1 dead beef beef
X dead beef beef

BOTH methods will
prevent X propagation
BOTH methods will
prevent X propagation

Don Mills

 Anything and’ed with a low will output
a low

 Anything or’ed with a high will output
a high

and/or expression X-hiding

9 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

logic a, b, c, d, out1, out2;

assign out1 = a & b;
assign out2 = c | d;

logic a, b, c, d, out1, out2;

assign out1 = a & b;
assign out2 = c | d;

logic a, b, c, d, out1, out2;

and (out1, a, b);
or (out2, a, b);

logic a, b, c, d, out1, out2;

and (out1, a, b);
or (out2, a, b);

Don Mills

The Old-Fashioned Solution

 Add extra condition checking in the middle of
the RTL functional description

 Add $display statements in RTL functional
code
 Hide these display statement from synthesis

using pragmas

 Very cumbersome to code and maintain and
therefore rarely used

10 Don Mills, Microchip Technology, Being Assertive with Your X, April 2013

Don Mills

Verilog Manual Assertion

Don Mills, Microchip Technology, Being Assertive with Your X, April 201311

always_comb
 if (sel == 1’b1)
 out = a;
 else
 //pragma translate off
 if (sel == 1’b0)
 //pragma translate on
 out = b;
 //pragma translate off
 else // sel == 1’bX or 1’bZ
 begin
 out = 'x;
 $display(%m "assert:
 sel X or Z at time %d“,
 $time);
 end
 //pragma translate on

always_comb
 if (sel == 1’b1)
 out = a;
 else
 //pragma translate off
 if (sel == 1’b0)
 //pragma translate on
 out = b;
 //pragma translate off
 else // sel == 1’bX or 1’bZ
 begin
 out = 'x;
 $display(%m "assert:
 sel X or Z at time %d“,
 $time);
 end
 //pragma translate on

always_comb
 if (sel)out = a;
 else out = b;

always_comb
 if (sel)out = a;
 else out = b;

Don Mills

Changing the rules?
 Some simulators provide an X-

propagation/X-optimization option
 The X-propagation mode: changes the RTL

rules and propagates an X out even if a and b
are known

 The X-optimization mode: If all the data inputs
are the same value, that value will be
propagated

Don Mills, Microchip Technology, Being Assertive with Your X, April 201312

always_comb
 if (sel)out = a;
 else out = b;

always_comb
 if (sel)out = a;
 else out = b;

se
l

a b SV
Default

X-Prop X-Opt

X 0 0 0 X 0

X 0 1 1 X X

X 1 0 0 X X

X 1 1 1 X 1

Don Mills

Find your X with SV Assertions
 Using immediate assertions is a simple

method to monitor for X in a design.
 They can be applied within a functional

module.
— To monitor combinational if/else, case, and

continuous assign statements.

 They can be applied at the test bench
level.
— For ports and flip-flop outputs, this method

should be considered, since it could be
applied to the design both before and after
synthesis.

 They can be disabled
 Severity levels available for reporting
 Automatically ignored by synthesis
Don Mills, Microchip Technology, Being Assertive with Your X, April 201313

Don Mills

System Verilog Immediate
Assertions Syntax
 For syntax for SystemVerilog

immediate assertion

 SystemVerilog built-in severity levels
— $fatal - ends the simulation
— $error - gives a runtime error, but simulation

continues
— $warning - gives a runtime warning, simulation

continues
— $info - prints the specified message

Don Mills, Microchip Technology, Being Assertive with Your X, April 201314

assert (expession) pass_statement(s) [else
fail_statment(s)]
assert (expession) pass_statement(s) [else
fail_statment(s)]

Don Mills
SystemVerilog
Assertions if/else
statement

 Simple immediate expression using default error
statement

 Example with error message included

 Could use a ‘define macro for the assertion code or
SV “let” statement

Don Mills, Microchip Technology, Being Assertive with Your X, April 201315

always_comb begin
 assert (!$isunknown(sel));
 if (sel == 1’b1) out = a;
 else out = b;
end

always_comb begin
 assert (!$isunknown(sel));
 if (sel == 1’b1) out = a;
 else out = b;
end

always_comb begin
 assert (!$isunknown(sel))
 else $error(“%m, sel = X”);
 if (sel == 1’b1) out = a;
 else out = b;
end

always_comb begin
 assert (!$isunknown(sel))
 else $error(“%m, sel = X”);
 if (sel == 1’b1) out = a;
 else out = b;
end

Don Mills

 Replace the immediate assertion with a `define
macro

Use macro’s with arguments

Don Mills, Microchip Technology, Being Assertive with Your X, April 201316

`define assert_X(arg) assert (!$isunknown(arg));

always_comb begin
 `assert_X(sel)
 if (sel == 1’b1) out = a;
 else out = b;
end

`define assert_X(arg) assert (!$isunknown(arg));

always_comb begin
 `assert_X(sel)
 if (sel == 1’b1) out = a;
 else out = b;
end

`define assert_X(arg, msg=“”) \
 assert (!$isunknown(arg)) \
 else $error(“%m,%s”, $time, msg);

always_comb begin
 `assert_X(sel,”sel=X”)
 if (sel == 1’b1) out = a;
 else out = b;
end

`define assert_X(arg, msg=“”) \
 assert (!$isunknown(arg)) \
 else $error(“%m,%s”, $time, msg);

always_comb begin
 `assert_X(sel,”sel=X”)
 if (sel == 1’b1) out = a;
 else out = b;
end

Don Mills

SystemVerilog Assertions
case statement

Don Mills, Microchip Technology, Being Assertive with Your X, April 201317

always_comb begin
 assert (!$isunknown(sel))
 else $error(“%m, case sel = X”);
 case (sel)

 2'b00 : out = a;

 2'b01 : out = b;

 2'b10 : out = c;

 2'b11 : out = d;

 endcase

end

always_comb begin
 assert (!$isunknown(sel))
 else $error(“%m, case sel = X”);
 case (sel)

 2'b00 : out = a;

 2'b01 : out = b;

 2'b10 : out = c;

 2'b11 : out = d;

 endcase

end

always_comb begin
 `assert_X(sel,”sel=X”)
 case (sel)

 2'b00 : out = a;

 2'b01 : out = b;

 2'b10 : out = c;

 2'b11 : out = d;

 endcase

end

always_comb begin
 `assert_X(sel,”sel=X”)
 case (sel)

 2'b00 : out = a;

 2'b01 : out = b;

 2'b10 : out = c;

 2'b11 : out = d;

 endcase

end

Don Mills

SystemVerilog Assertions
continuous assignments

Don Mills, Microchip Technology, Being Assertive with Your X, April 201318

assign out_or = a | b;
assign out_and = c & d;
assign out_tern = sel ? e : f;
assign x_check = {a,b,c,d,e,f,sel};

always_comb begin
 assert (!$isunknown(x_check))
 else $error(“%m, comb_logic = X”);

end

assign out_or = a | b;
assign out_and = c & d;
assign out_tern = sel ? e : f;
assign x_check = {a,b,c,d,e,f,sel};

always_comb begin
 assert (!$isunknown(x_check))
 else $error(“%m, comb_logic = X”);

end

always_comb begin
 `assert_X(x_check,”comb_logic=X”)

end

always_comb begin
 `assert_X(x_check,”comb_logic=X”)

end

O
R

Don Mills

SystemVerilog Assertions
for GLS as well as RTL

 Ports and flip-flop output names are
preserved through synthesis
—At least a some variation of a flip-flop

output name is preserved.

 Recommendation
—Put assertion X checks for ports and FF’s

in a side file that is then bound to the
design

Don Mills, Microchip Technology, Being Assertive with Your X, April 201319

Don Mills

SystemVerilog Assertions
Port check example

Don Mills, Microchip Technology, Being Assertive with Your X, April 201320

module foo(input logic in1, in2, din, clk,

 output logic out1, out2);

 assign out1 = in1 & in2;

 always_ff@(posedge clk)

out2 <= din;

endmodule

module foo(input logic in1, in2, din, clk,

 output logic out1, out2);

 assign out1 = in1 & in2;

 always_ff@(posedge clk)

out2 <= din;

endmodule

module PortCheck(input logic in1, in2, din, clk, out1, out2);

logic [5:0] sig_list

assign sig_list = {in1, in2, din, clk, out1, out2}

 `assert_X(sig_list),”X in foo ports”)

endmodule

module PortCheck(input logic in1, in2, din, clk, out1, out2);

logic [5:0] sig_list

assign sig_list = {in1, in2, din, clk, out1, out2}

 `assert_X(sig_list),”X in foo ports”)

endmodule

Don Mills

SystemVerilog Assertions
Port check example Cont’

Don Mills, Microchip Technology, Being Assertive with Your X, April 201321

module top;

 logic in1, in2 ...

 foo f(.*)

 test tb(.*)

 bind foo PortCheck X_ports (.*);

 ...

endmodule

module top;

 logic in1, in2 ...

 foo f(.*)

 test tb(.*)

 bind foo PortCheck X_ports (.*);

 ...

endmodule

 Bind is like a local instantiation

Module PortCheck (instance X_ports)
will be pseudo-instantiated into module
foo

Module PortCheck (instance X_ports)
will be pseudo-instantiated into module
foo

Don Mills

Disabling assertions

 X checking for assertions are not
always welcome
—During boot-up
—UPF low power mode

 SystemVerilog Assertions built in
system tasks disable/enable
assertions
—$assertof and $asserton

 Arguments to $assertof and $asserton
allow the user to specify
— A list of assertions
— A list of modules
— A hierarchy depth (levels down the hierarchy)Don Mills, Microchip Technology, Being Assertive with Your X, April 201322

Don Mills

Conclusions &
Recommendations
 SystemVerilog assertions for X detection

 easy to use
 built into the language
 ignored by synthesis
 can be turned on and of real time during

simulations.

 Use SystemVerilog assertions to monitor for X’s
 check all conditional tests, IE. if (sel) or case

expression
 check all inputs and/or outputs of module

 Assertion checks are better than tool based X-
propagation hooks
 they tell where the problem starts
 (could be automated by the tools)

Don Mills, Microchip Technology, Being Assertive with Your X, April 201323

BUT WAIT, There’s
more:

Mentors best kept
secret

BUT WAIT, There’s
more:

Mentors best kept
secret

MENTOR’S BEST KEPT
SECRET

Don Mills

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 200925

Concurrent Assertion with
chained implications
property p_chain;
 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;
endproperty:p_chain;

ap_chain: assert property (p_chain);

Does not
end with a
pass at cycle
4
or
cycle 7

a

0 1 42 3 5 6 7 8 9 10

b

c

d

p_chai
n

Don Mills

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 200926

Another look…
property p_chain;
 @(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;
endproperty:p_chain;

ap_chain: assert property (p_chain);

Why doesn’t
this assertion
end here with a
pass when both
c and d are
high?

Why does this
assertion end
with a pass
here?

Don Mills

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 200927

Assertion Thread Viewer (ATV)

Assertion
statement is listed
at the top of the
window

Only one
Assertion thread
is listed at a
time

Pass/Fail for
tested signals is
noted for each
time step

Self taught –
documentation is
outstanding for this tool

ATV must be enabled for a given
assertion and a specific thread of
that assertion prior to running a
simulation

Don Mills

28

Concurrent Assertions
Use Special Event Scheduling

 Concurrent assertions use special event scheduling
queues
— Prevents race conditions with events in the design

modules

Don Mills

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 200929

Why Use the ATV
(Mentor’s Best Kept
Secret)
 Concurrent Assertions are sampled at the

beginning of a time step

 If data is changing during the time step
 Must look at the data prior to the time

step
 Like a D-FF – must look at the value of

D prior the clk edge

 ATV doesn’t show the value, it shows the
pass/fail for each time step

	Slide 1
	Outline
	The Origin of X
	The Big Lie
	if/else statements X-hiding
	case statements X-hiding
	casex, casez, case inside statements X-hiding
	if / else vs. conditional operator for X- propagation
	and/or expression X-hiding
	The Old-Fashioned Solution
	Verilog Manual Assertion
	Changing the rules?
	Find your X with SV Assertions
	System Verilog Immediate Assertions Syntax
	SystemVerilog Assertions if/else statement
	Use macro’s with arguments
	SystemVerilog Assertions case statement
	SystemVerilog Assertions continuous assignments
	SystemVerilog Assertions for GLS as well as RTL
	SystemVerilog Assertions Port check example
	SystemVerilog Assertions Port check example Cont’
	Disabling assertions
	Conclusions & Recommendations
	MENTOR’s Best Kept Secret
	Concurrent Assertion with chained implications
	Another look…
	Assertion Thread Viewer (ATV)
	Concurrent Assertions Use Special Event Scheduling
	Why Use the ATV (Mentor’s Best Kept Secret)
	Slide 30

