

Yet Another Latch
and Gotchas Paper

Don Mills

Microchip Technology, INC
Chandler, AZ, USA

www.microchip.com

ABSTRACT

This paper discusses four SystemVerilog coding topics that can lead to inadvertent design bugs.
Old constructs such as casex, casez, full_case and parallel_case are briefly revisited. Newer
constructs like unique case and priority case added by SystemVerilog 2005 are reviewed. This
paper explores these constructs and explains where they break down. Presented are features
from SystemVerilog 2009 and other modeling techniques for solving design bugs. An updated
model for the Async-Set/Reset-FlipFlop is shown. Finally, clarification of the “logic” keyword
as specified in the SystemVerilog 2009 standard is given.

 Yet Another Latch
SNUG 2012 2 and Gotchas Paper

Table of Contents
1.0 Introduction ... 3

2.0 Combinational Case Coding ... 4

2.1 The Plain Ole’ Case Statement ... 4

2.2 SystemVerilog casex .. 5

2.3 SystemVerilog casez .. 6

2.4 SystemVerilog case inside ... 7

2.5 The Assertive Solution .. 9

2.6 The Conditional Operator “ ?: ” Option ... 11

3.0 Synthesis Case Directives History .. 12

3.1 Synthesis Directive full_case ... 12

3.2 Synthesis Directive parallel_case ... 14

4.0 SystemVerilog Enhancements .. 16

4.1 SystemVerilog priority .. 17

4.2 SystemVerilog unique ... 18

4.3 SystemVerilog unique0 ... 18

4.4 SV 2009 Violation Report .. 19

4.5 Only You Can Prevent Latches!!!... 19

5.0 Asynchronous Set/Reset Flip-Flop Bug.. 22

6.0 Old logic Type vs. New logic Value Set... 25

7.0 Conclusions and Guidelines .. 27

8.0 References ... 28

9.0 Acknowledgements ... 28

10.0 About the Author .. 28

 Yet Another Latch
SNUG 2012 3 and Gotchas Paper

1.0 Introduction
This paper discusses and provides solutions to issues that designers using SystemVerilog for de-
sign must address, such as:

• Case expression issue for casez and casex
• Latches generated when using unique case or priority case
• SRFF coding style problems with synthesis
• SystemVerilog 2009 new definition of logic

The SystemVerilog casez and casex types of case statements have an inherent simula-
tion/synthesis mismatch. The old Verilog workaround was to use casez because it was less
likely to have problems. Shown in this paper are models that provide better than “less likely“,
with the use of assertions and the SystemVerilog 2009 case inside feature.

Many designers are led to believe that unique case and priority case solve their latch
issues regarding case statements. This is simply not so. These constructs come close, but do
not cover all the conditions where latches can inadvertently be generated. This paper explains
where these constructs break down and provides alternative solutions that will always work.
The new SystemVerilog 2009 unique0 is discussed along with recommendations of usage.

The issue regarding asynchronous Set/Reset Flip-Flops (SRFF’s) has been discussed in previous
papers. [1] This paper provides a better solution. Even though the SRFF issue has been ad-
dressed in the past, many designers are not aware of it. This one issue is the most common prob-
lem I address when working with designers at different companies.

The final sections discuss how the definition of logic usage has changed from SystemVerilog-
2005[3] to SystemVerilog-2009[2]. The old rules have changed, and, as a result, the usage mod-
el is different today. This paper will attempt to clarify if this is a concern for your designs, and, if
so, provide a reasonable usage model.

Years ago, as I was developing my first training class, I reflected on the coding constructs I used
for design. It occurred to me that in all of my design work, I primarily used only two coding
structures to model hardware: if statements and case statements. All the other parts of the
language were like supporting actors to these two stars. Many papers have been written and pre-
sented at conferences over the years about coding styles for RTL using if and case statements.
Three of the most widely distributed papers are:

Clifford Cummings, “‘full_case parallel_case’, the Evil Twins of Verilog Synthesis” [4]

Clifford Cummings, “SystemVerilog’s priority & unique—A Solution to Verilog’s ‘full_case’ & paral-
lel_case’ Evil Twins!” [5]

Stuart Sutherland, “SystemVerilog Saves the Day—the Evil Twins are Defeated! ‘unique’ and ‘priority’ are
the new Heroes” [6]

This paper adds a few new approaches not presented in earlier papers. To lay the foundation of
these new items, we must review some of the old methods.

 Yet Another Latch
SNUG 2012 4 and Gotchas Paper

2.0 Combinational Case Coding
The goal, when writing combinational logic using case statements, is to write code that only
models combinational logic for both simulation and synthesis, and which, in neither case, implies
latches.

The terms case expression and case item are used frequently throughout this paper. These
terms are demonstrated as follows:

 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 2'b11 : out = d;
 endcase

Given this code snippet, the case expression is sel , and the terms on the left side of the colons
(2’b00, 2’b01, 2’b10, 2’b11) are the case items.

2.1 The Plain Ole’ Case Statement
For basic case statements, if the case expression does not match one of the case items, the
output will retain the previous value. This most often happens when the case items list does
not fully decode the case expression. In example 2.1a, the sel is partially decoded and will
result in a latch being modeled for the non-decoded sel state in both simulation and synthesis.

module mod_21a
 (input [1:0] sel,
 input a, b, c, d,
 output logic out);

 always_comb
 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 endcase

endmodule :mod_21a

Code Example 2.1a

In example 2.1b, the sel is fully decoded from a binary perspective, so no latches, right? If the
sel goes to X (or Z) in simulation, the unknown sel will be masked and the output will hold
its previous value (latched output from previous state). For synthesis, the case expression is
considered to always have a known value, so this latch condition does not exist in the synthe-
sized results. This is a classic X-propagation problem with a latch simulation/synthesis mis-
match.

 Yet Another Latch
SNUG 2012 5 and Gotchas Paper

module mod_21b
 (input [1:0] sel,
 input a, b, c, d,
 output logic out);

 always_comb
 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 2'b11 : out = d;
 endcase

endmodule :mod_21b

Code Example 2.1b

Another approach is to propagate X through the latch with a default statement, as shown in the
code example 2.1c.

module mod_21c
 (input [1:0] sel,
 input a, b, c, d,
 output logic out);

 always_comb //similar to always@* but better
 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 2'b11 : out = d;
 default : out = ’x;
 endcase

endmodule :mod_21c

Code Example 2.1c

Propagating X is a better solution than ignoring it. Most designers do not bother with the possi-
bility that the case expression could be unknown during RTL simulation. A simple solution to
monitoring and detecting this condition is shown in section 2.5.

2.2 SystemVerilog casex
The use of casex statements can cause design problems. A casex treats X’s as "don't cares" if
they are in either the case expression or the case items. The problem with casex occurs
when an input tested by a casex expression is initialized to an unknown state. The pre-
synthesis simulation will treat the unknown input as a "don't care" when evaluated in the casex

 Yet Another Latch
SNUG 2012 6 and Gotchas Paper

statement. In example 2.2a below, if the case expression == 3’bxxx or if the case expression
== 3’bzzz, the first case item would always be selected. In contrast, the corresponding post-
synthesis simulation with these same unknown inputs will propagate X’s through the gate-level
model.

Years ago, a company related an experience they had with the use of casex in a design. The
design went into a state where one of the inputs to a casex statement was unknown after the
reset was released. Since the pre-synthesis RTL simulation treated the unknown input as a "don't
care", the casex statement erroneously initialized the design to a working state. The test bench
for the gate-level simulation was not sophisticated or detailed enough to catch the error, and con-
sequently the first turn of the ASIC came back with a serious flaw.

Code example 2.2a below models a simple address decoder with an enable. Sometimes design
errors in an external interface will cause the enable to glitch to an unknown state after initializa-
tion, before settling to a valid state. While the enable is in this unknown state, the case expres-
sion will erroneously match one of the case items, based on the value of addr . In the pre-
synthesis design, this unknown condition is treated as a “don’t care“ which might mask a reset
initialization problem that would only be visible in post-synthesis simulations. A similar situa-
tion could exist if the MSB of the address bus went unknown while en is asserted. This would
cause either memce0 or memce1 to be asserted whenever the chip select (cs) signal should
have been asserted.

 module mod_22a
 (output logic memce0, memce1, cs,
 input en,
 input [31:30] addr);

 always_comb begin
 {memce0, memce1, cs} = 3'b0;
 casex ({addr, en})
 3'b101: memce0 = 1'b1;
 3'b111: memce1 = 1'b1;
 3'b0?1: cs = 1'b1;
 endcase
 end
 endmodule :mod_22a

Example 2.2a - Casex Address Decoder
Guideline: Do not use casex for RTL coding without other X-trapping monitoring. It is too
easy to match a stray, unknown signal. It is better to use the casez statement, as shown in the
next section.

2.3 SystemVerilog casez
The use of casez statements can cause the same design problems as casex , but these prob-
lems are less likely to be missed during verification. With casez, a problem would occur if an
input were initialized to a high-impedance state. Like the casex , the casez statement pro-

 Yet Another Latch
SNUG 2012 7 and Gotchas Paper

vides a short, concise, tabular method for coding certain useful structures, such as priority en-
coders, interrupt handlers, and address decoders. Therefore, the casex and casez statements
should not be completely dismissed from a design engineer’s repertoire of useful HDL coding
structures. The casez has been promoted as the favored of the two because it is less likely to
have an error condition occur.

Code example 2.3a is the same simple address decoder with enable as shown in example 2.2a
above, except that it uses the casez statement instead of the casex statement. The same prob-
lem described in Section 2.2 will occur when one of the inputs goes to a high-impedance state
rather than an unknown state. Once again, an erroneous case match will occur, depending on
the state of the other inputs to the case statement. However, it is less likely that a stray match
will occur with a casez statement (floating input or tri-state driven signal) than with a casex
statement (signal goes unknown briefly), but a potential problem does exist.

(Old) Guideline : Use casez over casex , but use it sparingly and cautiously for RTL coding,
since it is possible to match a stray tri-state signal in the case expression. In addition to stray
tri-state values on the casez expression causing erroneous matches to occur, what happens if a
bit in the case expression goes undefined? This model will not get erroneous matches as with
the casex , but it can hide X’s from propagating. Even a default case item will not always
work to catch and propagate the X’s that occur in the case sel of a casez . SystemVerilog
provides better solutions than just using casez , as discussed in a later section of this paper.

 module mod_23a
 (output logic memce0, memce1, cs,
 input en,
 input [31:30] addr);

 always_comb begin
 {memce0, memce1, cs} = 3'b0;
 casez ({addr, en})
 3'b101: memce0 = 1'b1;
 3'b111: memce1 = 1'b1;
 3'b0?1: cs = 1'b1;
 endcase
 end
 endmodule: mod_23a

Example 2.3a - Casez Address Decoder

2.4 SystemVerilog case inside 1

1 This section is updated from Sutherland/Mills 2006 Gotcha paper [7]

The casex and casez statements allow the mask bit to be set on either side of the compari-
son. In the preceding casex examples, if {addr, en} has a value of 3’bxxx (or 3’bzzz),
all bits are masked from the comparison, which means the first branch of the case statement will
be executed. A partial solution to this gotcha is to use casez instead of casex, as discussed
in the previous section. In the example used in this section, if a casez were used, a design

 Yet Another Latch
SNUG 2012 8 and Gotchas Paper

problem that causes an instruction of 3’bxxx (or even just an X in the left-most bit) will
not be masked, and an invalid instruction will be reported by the default branch (old-
fashioned assertion). However, a design problem that causes an instruction of 3’bzzz (or
just a Z in the left-most bit) will still be masked, and an invalid instruction will not be
trapped.

SystemVerilog offers two solutions to this gotcha. The first solution is a special one-sided, wild-
card comparison operator, ==? (there is also a !=? operator). This wildcard operator works
similarly to casex , in that bits can be masked from the comparison using X, Z or ?. However,
the mask bits can only be set on the right-hand side of the comparison. In the following example,
any X or Z bits in instruction will not be masked, and the invalid instruction will be
trapped:

if (instruction ==? 4’b0???)
opcode = instruction[2:0];

else if ... // decode other valid instructions
else begin

$display (“ERROR: invalid instruction!”);
opcode = 3'bxxx;

end

Example 2.4a “==?“ wildcard comparison operator

A second solution to this gotcha is the SystemVerilog case() inside statement. This state-
ment allows mask bits to be used in the case items using X, Z or ?, as with casex, but
case()inside uses a one-way, asymmetric masking for the comparison. Any X or Z bits in
the case expression are not masked. In the following example, any X or Z bits in instruc-
tion will not be masked, and the invalid instruction will be trapped by the default condition:

always _comb begin
case (instruction) inside

4'b0???: opcode = instruction[2:0]; //only test msb bit
4'b1000 : opcode = 3'b001;
... // decode other valid instructions
default :

begin
 //synthesis translate_off

 $display (“ERROR: invalid instruction!”);
 opcode = 3'bxxx; // propagate the X
//synthesis translate_on

end
endcase

end

Example 2.4b – Case Inside

 Yet Another Latch
SNUG 2012 9 and Gotchas Paper

SystemVerilog case inside will give the functionality of casez or casex without the er-
roneous matches resulting from case expression being X or Z (unknown). However, the X
propagation problems can still exist with case inside, even if there exists a default case
item to attempt to propagate the X’s. In code example 2.4b, when the instruction value is
4’b0x01, the X will not propagate. Whether the X matters in this case can be questioned, be-
cause the matching case item declares that since the msb is 0, the other three bits are “don’t
cares”. This question is relative to specific designs.

2.5 The Assertive Solution
This solution for dealing with case/casez/casex unknown case expressions is similar to
using case inside . This approach monitors the case expression for the error condition us-
ing an assertion statement immediately preceding the case statement. Where case inside
still allows the case expression to be unknown, it does not “wild card” on the case expression
when X or Z. The assertion solution proposed here will monitor the case expression and assert
an error when the case expression is unknown. One might question, once the case expression
is asserted as unknown, if there is still a need to propagate X’s.

Assertions can be disabled during resets, or at other times during simulation, as needed. Also,
the severity level can be adjusted between warning, error or fatal, as desired. When a case
statement covers all the binary conditions and uses an assertion as shown below, the case default
may no longer be needed to propagate X’s through the case statement as was done in example
2.1c. The case items can still use the X’s as “don’t cares” for simulation and synthesis model-
ing. Since assertions will trap all occurrences when the case expression goes to X or Z, it no
longer matters whether casex or casez are used. Both become safe constructs.

In code example 2.5a, the same code from example 2.1c is used, but with the assertion added, to
monitor for unknowns in the case expression.

module mod_25a
 (input a, b, c, d,
 input [1:0] sel,
 output logic out);

 always_comb begin
 assert (!$isunknown(sel))
 else $error(“%m : case_Sel = X“);
 case (sel)
 2'b00 : out = a;
 2'b01 : out = b;
 2'b10 : out = c;
 2'b11 : out = d;
 endcase
 end
endmodule :mod_25a

 Example 2.5a case with assert

 Yet Another Latch
SNUG 2012 10 and Gotchas Paper

In code example 2.5b, a casex is used with an assertion.

module mod_25b
 (output logic memce0, memce1, cs,
 input en,
 input [31:30] addr);

 always_comb begin

 {memce0, memce1, cs} = 3'b0;
 assert (!$isunknown({addr,en}))

 else $error(“%m : case_Sel = X“);
 casex ({addr, en})

 3'b101: memce0 = 1'b1;
 3'b111: memce1 = 1'b1;
 3'b0?1: cs = 1'b1;

 endcase
 end
 endmodule :mod_25b

Example 2.5b - Casex Address Decoder

Using the assertion before the case statement, as in example 2.5b, is preferred over a case de-
fault for casez and casex because an unknown case expression might not take the de-
fault branch.

In code example 2.5c, an assertion is placed in the case default replacing the $display
statement in the code example from 2.4b. In this code, the assertion is present and the X is also
propagated.

always _comb begin
case (instruction) inside

c0???: opcode = instruction[2:0]; //only test msb bit
4'b1000 : opcode = 3'b001;
... // decode other valid instructions
default :

begin
 assert (^{instruction}!== 1’bx);
 else $error(“case_Sel = X“);

opcode = ‘X;
endcase

end

Example 2.5c – Case Inside

 Yet Another Latch
SNUG 2012 11 and Gotchas Paper

The author recommends using assertions prior to the case statement to monitor all
case/casez/casex/case inside statements for unknown case expression values.
Assertions can be disabled as a whole or individually, so designers will not get false negatives
during reset or coming out of low-power modes. Assertions are automatically ignored by syn-
thesis; therefore, designers will not need to add the extra translate_off/translate_on
lines. Note that with the assertion preceding the case statements to trap case expression un-
knowns, there is very little difference between the casex and casez .

With case inside available now, the old recommendation to use casez over casex should
now be rescinded. The new SystemVerilog case inside replaces both casez and casex
and provides functionality that matches the synthesis model. As noted in the previous paragraph,
case inside case statements should be preceded by an assertion to monitor for unknown bit
in the case expression.

2.6 The Conditional Operator “ ?: ” Option
An approach many designers use, with the intention of propagating all X’s, is to use the condi-
tional (commonly referred to as the ternary) operator for conditional combinational logic. The
belief is that if the condition expression for the operator is X, the ?: operator will always output
an X. This is not always true under all conditions. Consider the following code snippet:

logic [3:0] out, data0, data1;
logic sel;

always _comb
 out = sel ? data1 : data0;

Example 2.6a – Conditional Operator

In this code, there are three possible outcomes based on the value of sel.

1. when sel == 1'b0 , out is assigned data0
2. when sel == 1'b1 , out is assigned data1
3. when cc or
 sel == 1'bZ , the simulator will test each bit position of the two data words.

When the bits match in value, that bit value will pass on to the output. When the bits differ, an
X will be assigned, as shown in line three of the following table:

sel data1 data0 out
4'b0 4'b1100 4'b0101 4'b0101
4'b1 4'b1100 4'b0101 4'b1100
4'bX 4'b1 xx 0 4'b1 zz 0 4'b1 xx 0
4'bX 4'b1100 4'b1100 4'b 1100

 Yet Another Latch
SNUG 2012 12 and Gotchas Paper

In the third test above, sel == 1'bX and some of the out bits are assigned to X .
However, in the fourth test, where again sel == 1'bX , out is “known” and the X in sel
is not propagated.

Therefore, even with the conditional operator, an immediate assertion should be used to monitor
for X’s.

logic [3:0] out, data0, data1;
logic sel;

always _comb begin
 assert (^{sel}!== 1’bx);
 else $error(“%m sel = X“, $time);
 out = sel ? data1 : data0;
end

Example 2.6b – Conditional Operator with immediate assertion

3.0 Synthesis Case Directives History
In the early days of synthesis, Synopsys defined two synthesis directives called full_case
and parallel_case . The company widely encouraged the use of these directives for all case
statements because they could, in some cases, make a design smaller and faster. The problem is
that this optimization often changed the design to an incorrect design. Many papers2 have been
written regarding the correct usage of full_case and parallel_case . The following
sections briefly review and describe the issues with these directives. Section 4.0 will provide
SystemVerilog 2005 [5] enhancements and SystemVerilog 2009 [2] updates.

3.1 Synthesis Directive full_case
Using the synthesis tool directive full_case gives more information about the design to the
synthesis tool than is provided to the simulation tool. This particular directive is used to inform
the synthesis tool that the case statement is fully defined, and that the output assignments for all
unused cases are “don't cares”. The functionality between pre- and post-synthesized designs may
or may not remain the same when using this directive.

In code example 3.1a, a case statement is coded without using any synthesis directives. The
resultant design is a decoder built from 3-input AND gates and inverters. The pre- and post-
synthesis simulations will match.

// no full_case
// Decoder built from four 3-input AND gates
// and two inverters
module mod_31a

2 See list of papers in reference section

 Yet Another Latch
SNUG 2012 13 and Gotchas Paper

 (output logic [3:0] y,
 input [1:0] a,
 input en);

 always_comb begin
 y = 4'h0; // latch prevention default assignment
 case ({en,a})
 3'b1_00: y[a] = 1'b1;
 3'b1_01: y[a] = 1'b1;
 3'b1_10: y[a] = 1'b1;
 3'b1_11: y[a] = 1'b1;
 endcase
 end
endmodule :mod_31a

Example 3.1a – Decoder with no synthesis directives

Code example 3.1b uses a case statement with the synthesis directive full_case . The only
difference between code example 3.1a and 3.1b is the synthesis directive. Because of the synthe-
sis directive, the en input is optimized away during synthesis and left as a dangling input. The
pre-synthesis simulator results of the modules from both examples 3.1a and 3.1b will match the
post-synthesis simulation results of example 3.1a, but will not match the post-synthesis simula-
tion results of example 3.1b.

// full_case applied
// Decoder built from four 2-input AND gates
// and two inverters
module mod_31b
 (output logic [3:0] y,
 input [1:0] a,
 input en);

 always_comb begin
 y = 4'h0; // latch prevention default assignme nt
 case ({en,a}) // synopsys full_case
 3'b1_00: y[a] = 1'b1;
 3'b1_01: y[a] = 1'b1;
 3'b1_10: y[a] = 1'b1;
 3'b1_11: y[a] = 1'b1;
 endcase
 end
endmodule :mod_31b

Example 3.1b – Decoder with synthesis directive full_case

The synthesis result from the example 3.1b is a decoder, synthesized into four 2-input NOR gates
and two inverters. The enable input is left unused as it was optimized away. The full_case treats

 Yet Another Latch
SNUG 2012 14 and Gotchas Paper

the case items as entries to a Karnaugh map. All non-specified case item conditions are con-
sidered as “don’t care” in the Karnaugh map. Since en is set for the four case items listed and
is a “don’t care” for the remaining conditions due to the full_case pragma, it is optimized away.
Bummer!

As widely defined in previous papers [1] [4] on synthesis directives, the guideline is to only use
the full_case directive with the inverse-case statement one-hot coding style.

 // full_case applied to one-hot state machine
 ...
 logic [3:0] state, next_state;
 ...

 always_comb begin //next state logic decode
 next_state = ’0; // latch prevention

 case (1’b1) // synopsys full_case
 state[0]: next_state[1] = 1’b1;
 state[1]: next_state[2] = 1’b1;
 state[2]: next_state[3] = 1’b1;
 state[3]: next_state[0] = 1’b1;
 endcase
 end
 ...

Example 3.1c – Best Practice use of synthesis directive full_case

3.2 Synthesis Directive parallel_case
Using the synthesis tool directive parallel_case also gives more information about the de-
sign to the synthesis tool than is provided to the simulation tool. This particular directive is used
to inform the synthesis tool that all cases should be tested in parallel, even if there are overlap-
ping cases which would normally cause a priority encoder to be inferred. When a design does
have overlapping cases, the functionality between pre- and post-synthesis designs will be differ-
ent.

Years ago, when adding parallel_case was the “in” thing to do, one consultant related the
experience of adding parallel_case to an RTL design to improve optimized area and speed.
The RTL model (behaving like a priority encoder) passed the test bench, but testing missed that
the gate-level model was implemented as non-priority parallel logic. Result: the design was
wrong, the simulation/synthesis mismatch was not discovered until ASIC prototypes were deliv-
ered, and the ASIC had to be redesigned at significant cost in both dollars and schedule. Today,
these types of errors should be found using equivalence checking tools such as Formality. Better
still is to follow methodologies that guard against such modeling problems.

The pre-synthesis simulations for the modules in examples 3.2a and 3.2b below, as well as the
post-synthesis design of the module in example 3.2a, will infer priority encoder functionality.

 Yet Another Latch
SNUG 2012 15 and Gotchas Paper

 // no parallel_case
 // Priority encoder - 2-input nand gate driving a n
 // inverter (z-output) and also driving a
 // 3-input AND gate (y-output)
 module mod_32a
 (output logic y, z,
 input a, b, c, d);

 always_comb begin
 {y, z} = 2'b0;
 casez ({a, b, c, d})
 4'b11??: z = 1;
 4'b??11: y = 1;
 endcase
 end
 endmodule :mod_32a

Example 3.2a – Priority Encoder Decoder no synthesis directives

The post-synthesis structure for module in example 3.2b will be two AND gates. The use of the
synthesis tool directive parallel_case will cause priority encoder case statements to be im-
plemented as parallel logic, causing pre- and post-synthesis simulation mismatches.

 // parallel_case
 // Priority encoder – (not really)
 // two 2-input AND gates
 module mod_32b
 (output logic y, z,
 input a, b, c, d);

 always_comb begin
 {y, z} = 2'b0;
 casez ({a, b, c, d}) // synopsys parallel_case
 4'b11??: z = 1;
 4'b??11: y = 1;
 endcase
 end
 endmodule:mod_32b

Example 3.2b – Priority Encoder Decoder synthesis directive parallel_case

As widely defined in previous papers [1][4] on synthesis directives, the guideline is to only use
the parallel_case directive with the inverse-case statement one-hot coding style in conjunc-
tion with full_case .

 Yet Another Latch
SNUG 2012 16 and Gotchas Paper

 // full_case applied to one-hot state machine

 ...
 logic [3:0] state, next_state;
 ...

 always_comb begin //next state logic decode
 next_state = ’0; // latch prevention assignmen t
 case (1’b1) // synopsys full_case parallel_case
 state[0]: next_state[1] = 1’b1;
 state[1]: next_state[2] = 1’b1;
 state[2]: next_state[3] = 1’b1;
 state[3]: next_state[0] = 1’b1;
 endcase
 end
 ...

Example 3.2c – Best Practice use of synthesis directives

4.0 SystemVerilog Enhancements
In an attempt to bring to the simulation environment the same capabilities that full_case and
parallel_case provide in synthesis, SystemVerilog 2005[3] added two case decision mod-
ifiers. These new case decision modifiers are called priority and unique . Both of these
decision modifiers come with built-in assertion checking to help prevent unexpected results.
Many papers, such as:

“SystemVerilog Saves the Day—the Evil Twins are Defeated! ‘unique’ and ‘priority’ are the
new Heroes”[6]

 “SystemVerilog’s priority & unique—A Solution to Verilog’s ‘full_case’ & parallel_case’
Evil Twins!”[5]

have been written about these two features, discussing how they improve upon, and are a good
replacement for, full_case/parallel_case . As noted in the conclusions of the Cum-
mings paper [5] and further elaborated previously in this paper, these decision modifiers still
should be used with caution.

Verilog’s if...else and case statements (including casez and casex) have four
gotchas that often result in design problems:

• Not all possible branches need to be specified (incomplete decisions)
• Redundant (duplicate) decision branches can be specified
• Software simulation evaluates decisions in the order listed (priority decoding), but the

decision might be able to be evaluated in any order in hardware (parallel decoding).
• X-hiding

The priority and unique modifiers eliminate the gotchas listed above with incomplete and
redundant decision statements, and prevent the gotchas common to synopsys full_case

 Yet Another Latch
SNUG 2012 17 and Gotchas Paper

and parallel_case pragmas. The benefits of the unique and priority decision modi-
fiers are described in two other SNUG papers [5] [6].

There are still some gotchas left hanging around when using these modifiers. First, these modi-
fiers only illuminate, or warn against, some of the conditions that cause latches. Section 4.5 will
show a way to always illuminate latches. Second, X-hiding is still hanging around. The tech-
niques shown in section 2.5 about using assertions and in the paper “Being Assertive With Your
X” [8] provide methods to trap X’s around all of these other features.

4.1 SystemVerilog priority
The case priority decision modifier tells the tools that the case items must be evaluated
in the order listed, which is already the default in SystemVerilog. What this decision modifier
really provides is a run-time violation report if the case statement is entered and there is no
matching condition.

The most practical usage of priority case is with inverse-case statements as shown in code
example 4.1a.

 always_comb
 priority case (1’b1)
 state[0]: nextstate = 3'b010;
 state[1]: nextstate = 3'b100;
 state[2]: nextstate = 3'b001;
 endcase

Example 4.1a – priority case

The code example 4.1a above will not give a violation report if multiple conditions match, i.e.
state === 3’111 . A violation report will occur if there are no matches, i.e. state ===
3’b000 . If there are no matches, then the code is modeling a latch condition. But what if the
following condition occurs when state !== 3’b000 ?

 always_comb
 priority case (1’b1)
 state[0]: nextstate1 = 3'b010;
 state[1]: nextstate2 = 3'b100;
 state[2]: nextstate1 = 3'b001;
 endcase

Example 4.1b – priority case with latches

In example 4.1b, no violation reports are reported while state !== 3’b000, yet latches will be
modeled, because all the outputs have not been assigned for all the conditions.

One other word of caution regarding the keyword “priority”: a priority case would appear
to imply that the order of a multi-branch decision statement will be maintained by synthesis. DC

 Yet Another Latch
SNUG 2012 18 and Gotchas Paper

does not do this. DC will still optimize priority case decision ordering, the same as with a
regular case decision statement. While gate-level optimization is a good thing, it is a gotcha if
the designer is expecting a priority case statement to automatically have the identical pri-
ority decoding logic after synthesis.

4.2 SystemVerilog unique
The unique case decision modifier tells the tools that the case items may be evaluated in
parallel and that all the items listed are the complete set of items to be considered. The tools will
give a violation report if overlapping case items exist. The tools will give a run-time violation
report if the case statement is entered and there are no matching case items. This decision
modifier is similar to the combined full_case/parallel_case synthesis pragmas.

 always_comb
 unique case (1’b1)
 state[0]: nextstate = 3'b010;
 state[1]: nextstate = 3'b100;
 state[2]: nextstate = 3'b001;
 endcase

Example 4.2a – unique case

The code example 4.2a above will give a violation report if multiple conditions match, i.e.
state === 3'111 . A violation report will also occur if there are no matches, i.e. state
=== 3’b000 . Again, what if the following condition occurs?

 always_comb
 unique case (1’b1)
 state[0]: nextstate1 = 3'b010;
 state[1]: nextstate2 = 3'b100;
 state[2]: nextstate1 = 3'b001;
 endcase

Example 4.2b – unique case with latches

In example 4.2b, if one and only one bit of state is set when this case statement is tested, no
violation reports are generated, yet latches will be modeled, because all the outputs have not
been assigned for all the conditions.

4.3 SystemVerilog unique0
SystemVerilog 2009[2] added unique0 case decision modifier, bringing in one more case
decision modifier for designers to choose from. The unique0 case decision modifier tells the
tools that the case expression is to only match, at most, one case item (no overlapping case
items), but is not required to match any case items. This is different from plain unique in that
it does not require a match. At first glance, this may appear to be of no use, but in reality, this
decision modifier allows a latch prevention methodology to be used which was not available

 Yet Another Latch
SNUG 2012 19 and Gotchas Paper

previously with just the unique case . The tools will also give a violation report if overlap-
ping case items exist. This decision modifier is similar to the parallel_case synthesis
pragma.

 always_comb
 unique0 case (1’b1)
 state[0]: nextstate = 3'b010;
 state[1]: nextstate = 3'b100;
 state[2]: nextstate = 3'b001;
 endcase

 Example 4.3a – unique0 case

The code example 4.3a above will give a violation report if multiple conditions match, i.e.
state === 3'111 , but will not give a violation report if there are no matches, i.e. state
=== 3’b000 .

At the time this paper was written, the unique0 construct was not supported by simulation or
synthesis tools tested by the author.

4.4 SV 2009 Violation Report
In SystemVerilog 2005, a warning was issued when unique or priority case conditions
warranted reporting problems such as no matching case items. Only warnings were issued be-
cause vendors did not want to report false errors. SystemVerilog 2009 replaces this warning
with a “violation report”. A violation report will default to issuing a warning, but the user can
elevate the reporting of a “violation report” to other levels, such as an error.

One side note regarding violation reporting is that the tools will make these violations immune to
false reports due to zero-delay glitches in the active region.

4.5 Only You Can Prevent Latches!!!3
The case examples discussed thus far in this paper showed various coding tricks and
SystemVerilog case decision modifiers that help reduce the possibility of a combinational logic
case statement inadvertently modeling latches. In all these examples, the focus is strictly on
the case item and the case expression matching. Multiple matches infer priority encoder be-
havior. No match infers a latch. Novice engineers may jump to the conclusion that all that is
missing to prevent latches then is a case item default condition – wrong. The default
does the same as a full_case or unique , in that it guarantees that a match will always be
made. In fact, unique will never warn of the no-match condition when a default is present,
since the default will cover all remaining non-specified decodes of the case expression.

If all the case items and case expressions are fully covered, can there still be latches? Con-
sider the following case example:

3 See Breksticker [9] for additional details on this subject

 Yet Another Latch
SNUG 2012 20 and Gotchas Paper

always_comb
 unique case (sel)
 cond1: begin
 out1 = in1a;
 out2 = in2a;
 end

 cond2: out2 = in2b;

 cond3: out1 = in1c;

 default :
 begin
 out1 = in1a;
 out2 = in2a;
 end
 endcase

 Example 4.5a – unique case with default and latches

In code example 4.5a, the case is fully defined because of the default . The unique case
would still issue violation reports if there were overlapping conditions, which do not exist in this
example. Unfortunately, since not all outputs are defined for all the states, latches will also be
inferred. It does not matter that the default lists all the outputs, the default condition will
only be reached when there are no other case item matches.

One solution is to assign all outputs within all conditions, as shown in the next code example.

always_comb
 unique case (sel)
 cond1: begin
 out1 = in1a;
 out2 = in2a;
 end

 cond2: begin
 out1 = in1a;
 out2 = in2b;
 end

 cond3: begin
 out1 = in1c;
 out2 = in2a;
 end

 default :

 Yet Another Latch
SNUG 2012 21 and Gotchas Paper

 begin
 out1 = in1a;
 out2 = in2a;
 end
 endcase

 Example 4.5b – unique case with all outputs assigned for each case item

The approach shown in example 4.5b does work, but it can become very hard to read and main-
tain when there are many outputs from this combinational block. I have worked with some state
machines that drive ten or more outputs from state decoding, like in this example. Additionally,
output assignments that are unique from state to state get lost in all the redundant output assign-
ments. Contrast the two always blocks above. In first example, it is easy to see the unique
output conditions for each decode. In the second example, it can be easy to miss differences, and
these examples have only two outputs.

Consider the following code example where output defaults are placed at the beginning of the
combinational always block. Now only the conditions that modify the initial defaults need to
be decoded.

always_comb begin
 out1 = in1a;
 out2 = in2a;
 case (sel)
 cond2: out2 = in2b;
 cond3: out1 = in1c;
 endcase
end

 Example 4.5c – case with defaults listed before case statement

This code is very concise and is exactly the same functionality as example 4.5b. This coding
style lists the defaults first, before any conditional if or case statements. Then it uses the con-
ditional statements case and/or if to modify the outputs as needed. Only the conditions that
cause the output to be different from the default will need to be listed.

What happens if unique is added to the code in example 4.5c, providing the checks and viola-
tion reports given by the unique decision modifier?

always_comb begin
 out1 = in1a;
 out2 = in2a;
 unique case (sel) // bad design – don’t use!!
 cond2: out2 = in2b;
 cond3: out1 = in1c;
 endcase

 Yet Another Latch
SNUG 2012 22 and Gotchas Paper

end

Example 4.5d – unique case with defaults listed before case statement

Using unique with defaults listed outside the case statement will not synthesize to the same
design as simulated. The unique case in code example 4.5d will synthesize to simply out1
= in1c and out2 = in2b . Wow, talk about logic reduction! This occurs because unique
case implies to the synthesis tool that all the conditions cared about are listed in the case
statement and all others are “don’t cares” (like Karnaugh map “don’t cares”). Since the defaults
are listed before (and outside) the case statement, they are ignored by synthesis when unique
case is used.

A better solution would be to use the unique0. This will only check for non-overlapping case
items and does not require a matching case item. Synthesis will not logic reduce away the de-
fault outputs with this case decision modifier.

always_comb begin
 out1 = in1a;
 out2 = in2a;
 unique0 case (sel) // GOOD design – USE IT (When supported)
 cond2: out2 = in2b;
 cond3: out1 = in1c;
 endcase
end

Example 4.5e – unique0 case with defaults listed before case statement

5.0 Asynchronous Set/Reset Flip-Flop Bug
One of the biggest “ignored” bugs of the Synopsys Synthesis HDL reader (Presto) is the re-
quired, but functionally incorrect, coding style for asynchronous Set/Reset Flip-Flops (SRFF’s).

 // DFF with asynchronous set and reset
 // required Synopsys coding style for Synthesis
 // This model can fail in simulation
 module mod_50a
 (output logic q,
 input d, clk, rstn, setn);

 always_ff @(posedge clk or negedge rstn or negedge setn)
 if (!rstn) q <= 0; // asynchronous reset
 else if (!setn) q <= 1; // asynchronous set
 else q <= d;
 endmodule:mod_50a

Example 5.0a –synthesizable asynchronous set/reset DFF

 Yet Another Latch
SNUG 2012 23 and Gotchas Paper

As a consultant and trainer, I am constantly asked about this coding style. When I was a junior
designer, I was under the opinion that if you are doing synchronous design, you should never
need an asynchronous SET/RESET FF. The opinion was that once you initialized your FF with
either a SET or a RESET, you would not be applying the asynchronous SET/RESET signal again
during the simulation. Later in my career, I worked for companies that use an active asynchro-
nous SET/RESET after the initialization phase of the simulation. These devices use an approach
to reconfigure the chip after the chip starts actively running. That is, once the initial setup is
complete, the asynchronous reset is applied to the configuration circuit a second time. During
this second reset mode, the configuration settings are applied to the asynchronous
set /reset inputs to the FF’s in the configuration circuit. Next the reset is removed, allow-
ing for the asynchronous configuration settings to be applied to the FF’s. The FF’s with the set
still active should change from their reset state to their set state at this point. Unfortunately,
the FF model in example 5.0a will hold its reset state until the next clock cycle starts. If the
set is removed before this clock occurs, the set value is never registered and the simulation
fails. In an actual FF, this approach works fine because the set /reset inputs are true level-
sensitive inputs. But with the SystemVerilog FF modeling restrictions for synthesis, simulation
fails!!!!!!! This means that the model for synthesis does not represent the actual design.

What if the negedge condition is removed from the sensitivity list, so that the code is sampled
on the trailing edge of reset, as well as the leading edge?

 // Bad DFF with asynchronous set and reset. This design
 // will not compile from Synopsys, and the desi gn will
 // also not simulate correctly.
 module mod_50b
 (output logic q,
 input d, clk, rstn, setn);

 always_ff @(posedge clk or rstn or setn)
 if (!rstn) q <= 0; // asynchronous reset
 else if (!setn) q <= 1; // asynchronous set
 else q <= d;

 endmodule:mod_50b

Example 5.0b –non-synthesizable bad design asynchronous set/reset DFF

The code in example 5.0b is non-synthesizable because the synthesis reader requires that if one
item in a sensitivity list has an edge specified, then all the items in the sensitivity list must have
edges specified. Also, the RTL model does not match the intended model. Whenever a set or
reset goes from low to high, the block is entered and unintended clocks could be modeled. As-
sume clock , reset , and set are all at a high state. Reset then goes low for a while and
then back high. When reset goes low, the always block will be entered, and q will be put in
its reset state. However, when reset goes back high, the always block will be entered again,
and the if condition check will fall through to the final else test, assigning q <= d . In this

 Yet Another Latch
SNUG 2012 24 and Gotchas Paper

case, the rising edge of reset will cause a false clock to occur, and q will be assigned to d er-
roneously.

Over the years, there have been many solutions proposed to this problem. One solution de-
scribed by a SNUG paper in 1999[1] recommended using non-synthesizable force and re-
lease constructs. The force and release statements will force a correct pre-synthesis
model to accurately model the post-synthesis model.

 // Good DFF with asynchronous set and reset
 // and self-correcting set-reset assignment
 module mod_50c
 (output logic q,
 input d, clk, rstn, setn);

 always @(posedge clk or negedge rstn or negedge setn)
 if (!rstn) q <= 0; // asynchronous rese t
 else if (!setn) q <= 1; // asynchronous set
 else q <= d;

 // synthesis translate_off
 always @(rstn or setn)
 if (rstn && !setn) force q = 1;
 else release q;
 // synthesis translate_on

 endmodule:mod_50c

Example 5.0c – synthesizable DFF with asynchronous set/reset

The solution in example 5.0c works, but is ugly for many reasons. First, in simulation, the sig-
nals are assigned from multiple always blocks, meaning the always block modeling the
SRFF cannot use the SystemVerilog always_ff , eliminating the RTL simulation checks that
are provided by always_ff . Second, the use of force/release is used to override the real
code. When is the signal assigned from the design always block and when is it overridden by
the force/release ? Third, the signals are assigned by both blocking and non-blocking as-
signment operators. These issues violate RTL for synthesis guidelines, hence the synthesis
translate_off, synthesis translate_on switches.

Consider the following as a cleaner solution. This solution only uses the original always
block. The synthesis translate_off, synthesis translate_on comment
statements are replaced by a compiler directive which is automatically set when the code is read
by the synthesis tool. The code inside the compiler directive ’ifndef ... ’endif adds a
special sensitivity list entry condition in the sensitivity list.

 Yet Another Latch
SNUG 2012 25 and Gotchas Paper

// Trigger when rst_n goes high and set_n is low
always_ff @(posedge clk
 or negedge rst_n
 or negedge set_n
 ` ifndef SYNTHESIS
 or posedge (rst_n & ~set_n)
 ` endif
)
 if (!rst_n) q <= ’0;
 else if (!set_n) q <= ’1;
 else q <= d;

Example 5.0d – better model of DFF with asynchronous set/reset that both simulates
and synthesizes correctly

My proposal to Synopsys is to make a special input condition to Presto to allow/ignore this addi-
tional test in the sensitivity list so that even the conditional compilation `ifdef/`endif or
translate_off/translate_on pragmas could be illuminated.

6.0 Old logic Type vs. New logic Value Set
In the pre-IEEE SystemVerilog days, SuperLog introduced rash new ideas, laying the foundation
for Verilog enhancements that later, combined with Verilog and other recommendations, became
SystemVerilog. One of the significant SuperLog design enhancements, that is now part of Sys-
tem Verilog, is the term logic, introduced as a complete replacement for reg . SuperLog also
modified the usage for logic or reg variables such that they could be used anywhere a wire
could be used, but restricted in that they must only have a single-source driver. This means that a
designer could use the logic type everywhere in the design, except when a signal has multiple
drivers. This gives us a simplistic, simple type selection, removing the confusing data type rules
of Verilog. For those designers who have taken this approach (and there are many), there is a
significant change in the way simulators are treating logi c today. As a support consultant, I
have seen simulation problems resulting from this issue.

The SystemVerilog 2009 standard made a subtle change to the meaning of the keywords reg ,
logic and bit . Prior to SV-2009, these keywords were considered to be declarations of varia-
bles. In SV-2009, they were changed to be indicators of the logic value set that either a varia-
ble or net could use. The logic and reg keywords are synonymous; both indicate a 4-state
kind. The bit keyword indicates a 2-state kind. The wire net types, and all other net types,
are always a logic (4-state) value set. Some variable types, such as integer, are logic (4-state)
value set, while other variable types, such as byte and int , are bit (2-state) value set. The pure
SystemVerilog declaration of a signal is: type “value set” size name. For example:

 var logic [7:0] a,
 wire logic [3:0] b,

 Yet Another Latch
SNUG 2012 26 and Gotchas Paper

What gets confusing is that, for backward compatibility, bit and logic can be used without a
type and will infer the SystemVerilog variable type var . In other words, using bit or logic
alone infers variables of type var bit or var logic . Also for backward compatibility, the
net type wire by itself infers wire logic . The type var is ugly and you will most likely
never see it or use it, with the one exception shown below.

Until recently, SystemVerilog simulators followed the SuperLog and IEEE 1800-2005[3] im-
plementation of defining logic as a variable type everywhere it was used. In the recent im-
plementation of some simulators, the usage definition of logic has changed to be compliant
with IEEE 1800-2009[2] standard using logic as a value set, rather than a type.

Remember, this discussion applies to those designers who are using logic as a single source
variable everywhere and only using net types for multi-driven signals. The problem (and this is
significant) is that now logic will infer a “variable logic” for all usages, except for input ports.
Under SV-2009 rules, an input port declared as input logic infers input wire logic , not
input var logic . This is an important difference! An input port that is a net data type can
have multiple drivers, including an internal continuous assignment that "back drives" the input
port. An input port that is a variable type is restricted to a single source (driver). Back driving
an input port that is a variable is not allowed. Designers who use the logic only implementa-
tion, and want input ports to be variables, now need to update their already verbose input
port declaration. To actually get a variable type input port, the designer needs to add the
SystemVerilog variable type var to the input port declaration.

module mod_input
 (input logic a, b, // implies net (wire) input port
 input var logic c, d, // implies variable input port

 …

YUCK!

 Yet Another Latch
SNUG 2012 27 and Gotchas Paper

7.0 Conclusions and Guidelines
This paper discussed and provided solutions to issues that designers using SystemVerilog for de-
sign must address, such as:

• Case expression issue for casez and casex
• Latches generated when using unique case or priority case
• SRFF coding style problems with synthesis
• SystemVerilog 2009 new definition of logic

The SystemVerilog case inside is a good replacement for casez and casex . Adding an
assertion preceding each case statement (case or case inside) to monitor for unknowns in
the case expression contributes to a very robust design. The assertions could also illuminate
the need for X propagation through RTL code since the X’s are now visible.

The old synthesis pragmas full_case and parallel_case were attempted to be replaced
by SystemVerilog case decision modifiers such as unique . The idea was to bring the same
functionality with built-in checks to the simulator that existed in the synthesis tool. Unfortunate-
ly, these case definition modifiers can only help to reduce unintended latches, they cannot cov-
er all the conditions that cause unintended latches. The only way to fully prevent unintended
latches in combinational logic blocks is to assign every output for every condition. This can be
done two ways: first, by literally assigning all outputs within the decodes of all the conditions.
This style requires lots of code and much redundancy. The second, and by far less verbose
method, is to assign all the outputs at the top of the combinational logic block, before any condi-
tional statements. Then, within the conditional statements, only decode and assign the conditions
that would change the output from the default assignments previously declared.

The asynchronous set /reset flip-flop model required by synthesis is functionally wrong and
must have a fix applied to make it simulation right for RTL. This must not be ignored.

Finally, the designers who have taken on the modeling style of declaring all single-driven signals
as logic types, and strictly use wire (or tri) only for multi-driven signals, must now deal
with a change of definition. The usage of logic is the same as before in all cases, except for
module input ports where the default is wire even if logic is listed. Yuck! Depending
on how pure the designers want to be, if the desire is to follow the previously stated guideline,
then the input ports must be declared as var logic . Yuck! Yuck! Yuck! (Let me tell you
what I really think about this.)

 Yet Another Latch
SNUG 2012 28 and Gotchas Paper

8.0 References
[1] Don Mills and Clifford Cummings, "RTL Coding Styles That Yield Simulation and Syn-

thesis Mismatches," in SNUG 1999 Proceedings.

[2] “IEEE 1800-2009 IEEE Standard SystemVerilog – Unified Hardware Design, Specifi-
cation and Verification Language,” IEEE, New York, NY, 2009. ISBN 978-0-7381-
6129-7.

[3] “IEEE 1800-2005 IEEE Standard SystemVerilog – Unified Hardware Design, Specifi-
cation and Verification Language,” IEEE, New York, NY, 2005. ISBN 0-7381-4810-5.

[4] Clifford Cummings, “‘full_case parallel_case’, the Evil Twins of Verilog Synthesis,”
SNUG Boston, 1999.

[5] Clifford Cummings, “SystemVerilog’s priority & unique—A Solution to Verilog’s
‘full_case’ & parallel_case’ Evil Twins!,” Israel SNUG, 2005

[6] Stuart Sutherland, “SystemVerilog Saves the Day—the Evil Twins are Defeated!
‘unique’ and ‘priority’ are the new Heroes,” San Jose SNUG, 2005

[7] Stuart Sutherland and Don Mills, “Standard Gotchas, Subtleties in the Verilog and
SystemVerilog Standards That Every Engineer Should Know,” Boston SNUG, 2006

[8] Don Mills, “Being Assertive With Your X,” Boston SNUG 2004

[9] Shalom Bresticker, “Just When You Thought It Was Safe to Start Coding
Again…Return of the SystemVerilog Gotchas” Israel SNUG 2009, Boston SNUG 2008

9.0 Acknowledgements
Thanks are in order to those who have helped review this paper for accuracy. Ilana Flyer, Cliff
Cummings, Stuart Sutherland and Bernard Miller have provided enormous technical support in
addition to basic format and grammar checking. Thanks to all others who have volunteered and
offered their services to help proofread this paper.

10.0 About the Author
Mr. Don Mills has been involved in ASIC design since 1986. During that time, he has worked on
more than 30 ASIC projects. Don started using top-down design methodology in 1991 (Synopsys
DC 1.2). Don has developed and implemented top-down ASIC design flows at several compa-
nies.

His specialty is integrating tools and automating the flow. Don works for Microchip Technology
Inc. as an internal SystemVerilog consultant. Don is a member of the IEEE Verilog and System
Verilog committees that are working on language issues and enhancements. Don has authored
and co-authored numerous papers, such as “SystemVerilog Assertions are for Design Engineers
Too!” and “RTL Coding Styles that Yield Simulation and Synthesis Mismatches”. Copies of the-
se papers can be found at www.lcdm-eng.com. Mr. Mills can be reached at

mills@lcdm-eng.com or don.mills@microchip.com

