Yet Another Latch
and Gotchas Paper

Don Mills

Microchip Technology, INC
Chandler, AZ, USA

Www.microchip.com

ABSTRACT

This paper discusses four SystemVerilog codings$apiat can lead to inadvertent design bugs.
Old constructs such as casex, casez, full_casegarallel_case are briefly revisited. Newer
constructs like unique case and priority case adoe&ystemVerilog 2005 are reviewed. This
paper explores these constructs and explains wihesebreak down. Presented are features
from SystemVerilog 2009 and other modeling teclesdar solving design bugs. An updated
model for the Async-Set/Reset-FlipFlop is showinally, clarification of the “logic” keyword

as specified in the SystemVerilog 2009 standagivien.

Table of Contents

I O I [01 o To [T 1 [o PP 3
2.0 Combinational CasSe COUINGuuuuruuunnnmmmmmmmeeeeeeeeeerernnnnnaaaeaeeeeeeeeeseeeeeeeereeeerermmnnnnn 4
2.1 The Plain Ole’ Case Stat@MENTo eeeerrriiiiiiaaaree e e e e e eeeeeeeeeeieeeeeeeeeseerenn s 4
2.2 SYSEEMVEIIOGASEX ..eeeeiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e eeeeeebebann s 5
2.3 SYSIEMVEIIOQASEZ ...ttt e e e e e e e 6
2.4 SystemVerilogase INSIAE cccoooeiiiiiiiiieeerr e e e e e e e as 7
2.5 The ASSErtiVE SOIULION.....ceiiiiiii et e e eees 9
2.6 The Conditional Operator?? " OPLIONoeuuuiiiiiiiiiiiee e s e e e e e e eeeeeeeeens 11
3.0 Synthesis Case DireCtiveS HiSTONYcccooiiiiiiiiiiiiiiiiiiiie e e e 12
3.1 Synthesis DIreCtiBIL_CASE ..o 12
3.2 Synthesis Directiv@arallel_Case ..o 14
4.0 SystemVerilog ENNANCEMENLS ... eeeeeeeiiiiieeiiiiiiiisse e e e e e e e aeaeaaeaeeeaaeeeeeeannnnn 16
o R VA1 (= 4 0NV =T][0T o T o] 11 Y/ 17
4.2 SYySteMVErIlOQNIQUE ...cccoeiiieeeeeeeeeee et e e e e et e e e e e e e e e e e e et a e e e e e e aaeaeeeeees 18
4.3 SysStemVerilogNIQUEODuuuuiiiiiiiee ettt e e e e e e e e e e e e eeeeearraanaa 81
4.4 SV 2009 Violation REPOITceee oottt s s s e e e e e e e e aaaaaaeaaaaaaeeeeeeessnnnnnnns 19
4.5 Only You Can Prevent LatChes!. e 19
5.0 Asynchronous Set/Reset FIip-FIOP BUQ......uuuuuiiiiiiiiiiiiieee e 22
6.0 Oldiogic Type vs. NewogiC Value Set..........uuuuuiiiiiiiiiiiiieiiiii e 25
7.0 Conclusions and GUIAEIINESueiiiiiiiiiiiiiiiicee e 27
8.0 REIBIBICEScoiiiiieeiieet e eemm oo ettt e e e e e e e e e e e e e e e e 28
9.0 ACKNOWIEAQEMENTScc et eeeeeeer et e e e ettt e e e e e e e e e e e e e eeeeees 28
10.0 ADOUL the AULNOT ..coeiiiiiiiiii s ettt eeee e e e s s e e e e e e e e e e e e eeeeeneenannns 28

Yet Another Latch

SNUG 2012 2 and Gotchas Paper

1.0 Introduction
This paper discusses and provides solutions tessthat designers using SystemVerilog for de-
sign must address, such as:

» Case expression issue for casez and casex

» Latches generated when using unique case or proage
* SRFF coding style problems with synthesis

e SystemVerilog 2009 new definition of logic

The SystemVerilogasez andcasex types of case statements have an inherent simula-
tion/synthesis mismatch. The old Verilog workarduvas to useasez because it was less
likely to have problems. Shown in this paper acalals that provide better than “less likely*,
with the use of assertions and the SystemVerildP2se inside feature.

Many designers are led to believe thaique case andpriority case solve their latch
issues regardingase statements. This is simply not so. These constieame close, but do
not cover all the conditions where latches canveaently be generated. This paper explains
where these constructs break down and providesattee solutions that will always work.
The new SystemVerilog 20@fhique0 is discussed along with recommendations of usage.

The issue regarding asynchronous Set/Reset FlipsKIBRFF’s) has been discussed in previous
papers. [1] This paper provides a better solutiémen though the SRFF issue has been ad-
dressed in the past, many designers are not awérd his one issue is the most common prob-
lem | address when working with designers at déiféicompanies.

The final sections discuss how the definitiodagfic usage has changed from SystemVerilog-
2005[3] to SystemVerilog-2009[2]. The old rulevbahanged, and, as a result, the usage mod-
el is different today. This paper will attempt tardy if this is a concern for your designs, aifd,

S0, provide a reasonable usage model.

Years ago, as | was developing my first trainiragsl | reflected on the coding constructs | used
for design. It occurred to me that in all of mysim work, | primarily used only two coding
structures to model hardware: statements anchse statements. All the other parts of the
language were like supporting actors to these tanss Many papers have been written and pre-
sented at conferences over the years about cotyileg $or RTL usingf andcase statements.
Three of the most widely distributed papers are:

Clifford Cummings,“full_case parallel_case’, the Evil Twins of Veodj Synthesis(4]

Clifford Cummings, SystemVerilog's priority & unique—A Solution to Neay's ‘full_case’ & paral-
lel_case’ Evil Twins![5]

Stuart Sutherland SystemVerilog Saves the Day—the Evil Twins areabede‘unique’ and ‘priority’ are
the new Hero€q6]

This paper adds a few new approaches not presengzdlier papers. To lay the foundation of
these new items, we must review some of the oldhoust

Yet Another Latch
SNUG 2012 3 and Gotchas Paper

2.0 Combinational Case Coding

The goal, when writing combinational logic usicase statements, is to write code that only
models combinational logic for both simulation ayathesis, and which, in neither case, implies
latches.

The termsxase expression andase item are used frequently throughout this papdresé
terms are demonstrated as follows:

case (sel)
2'b00 : out = a;
2'b01 : out = b;
2'b10 : out =c;
2'bll :out=d;

endcase

Given this code snippet, the case expressisalis and the terms on the left side of the colons
(2’b00, 2'b01, 2'b10, 2’b11) are the case items.

2.1 The Plain Ole’ Case Statement

For basiccase statements, if thease expression does not match one ofthse items, the
output will retain the previous value. This molien happens when tloase items list does
not fully decode thease expression. In example 2.1a, #ed is partially decoded and will
result in a latch being modeled for the non-deca#d state in both simulation and synthesis.

module mod_21a
(input [1:0] sel,
input a, b,cd,
output logic out);

always_comb

case (sel)
2'b00 : out = a;
2'b01 : out = b;
2'b10: out =c;

endcase

endmodule :mod_21a

Code Example 2.1a

In example 2.1b, theel is fully decoded from a binary perspective, sdaiohes, right? If the
sel goesto X (or Z) in simulation, the unknowsel will be masked and the output will hold
its previous value (latched output from previowest For synthesis, the case expression is
considered to always have a known value, so tteh leondition does not exist in the synthe-
sized results. This is a classic X-propagatiorblgnm with a latch simulation/synthesis mis-
match.

Yet Another Latch
SNUG 2012 4 and Gotchas Paper

module mod_21b

(input [1:0] sel,
input a, b,c,d,
output logic out);

always _comb

case (sel)
2'b00 : out = a;
2'b01 : out = b;
2'b10 : out =c;
2'bll :out=d;

endcase

endmodule :mod_21b

Code Example 2.1b

Another approach is to propagate X through thehlatith a default statement, as shown in the
code example 2.1c.

module mod_21c

(input [1:0] sel,
input a, b,c,d,
output logic out);

always _comb //similar to always@* but better

case (sel)
2'b00 : out = a;
2'b01 : out = b;
2'b10 : out =c;
2'bll :out=d;
default Jout ='X;
endcase

endmodule :mod_21c

Code Example 2.1c

Propagating X is a better solution than ignoringhtost designers do not bother with the possi-
bility that thecase expression could be unknown during RTL simulatidnsimple solution to
monitoring and detecting this condition is showséttion 2.5.

2.2 SystemVerilogcasex

The use otasex statements can cause design problemsaskx treats X's as "don't cares" if
they are in either thease expression or thease items. The problem witbasex occurs
when an input tested bycasex expression is initialized to an unknown state e phe-
synthesis simulation will treat the unknown inpstaa’don’t care” when evaluated in tasex

Yet Another Latch
SNUG 2012 5 and Gotchas Paper

statement. In example 2.2a below, if tase expression == 3’bxxx or if thease expression
== 3'bzzz, the firstase item would always be selected. In contrast, tireesponding post-
synthesis simulation with these same unknown inpiltropagate X’'s through the gate-level
model.

Years ago, a company related an experience thewhladhe use otasex in a design. The
design went into a state where one of the inpuéscsex statement was unknown after the
reset was released. Since the pre-synthesis Rifllation treated the unknown input as a "don't
care", thecasex statement erroneously initialized the design woeking state. The test bench
for the gate-level simulation was not sophisticaiedetailed enough to catch the error, and con-
sequently the first turn of the ASIC came back veitberious flaw.

Code example 2.2a below models a simple addressldewith an enable. Sometimes design
errors in an external interface will cause the ém#dglitch to an unknown state after initializa-
tion, before settling to a valid state. While #r&ble is in this unknown state, tese expres-
sion will erroneously match one of thase items, based on the valueaxfdr . In the pre-
synthesis design, this unknown condition is treated “don’t care” which might mask a reset
initialization problem that would only be visible post-synthesis simulations. A similar situa-
tion could exist if the MSB of the address bus wamknown whileen is asserted. This would
cause eithememceOor memcelto be asserted whenever the chip selex) éignal should
have been asserted.

module mod_22a

(output logic memceO, memcel, cs,
input en,
input [31:30] addr);

always_comb begin
{memce0, memcel, cs} = 3'b0;
casex ({addr, en})
3'b101: memceO = 1'b1;
3'b111: memcel = 1'b1;
3'b0?1:cs =1'bl;
endcase
end
endmodule :mod_22a

Example 2.2a - Casex Address Decoder
Guideline: Do not useasex for RTL coding without other X-trapping monitoringt is too

easy to match a stray, unknown signal. It is betteise the&easez statement, as shown in the
next section.

2.3 SystemVerilogcasez

The use otasez statements can cause the same design problerasexs , but these prob-
lems are less likely to be missed during verifmati Withcasez, a problem would occur if an
input were initialized to a high-impedance stdté&e thecasex , thecasez statement pro-

Yet Another Latch
SNUG 2012 6 and Gotchas Paper

vides a short, concise, tabular method for codertam useful structures, such as priority en-
coders, interrupt handlers, and address decodérsefore, theasex andcasez statements
should not be completely dismissed from a desigyineer’s repertoire of useful HDL coding
structures. Theasez has been promoted as the favored of the two beagtissless likely to
have an error condition occur.

Code example 2.3a is the same simple address deegildenable as shown in example 2.2a
above, except that it uses ttesez statement instead of tisasex statement. The same prob-
lem described in Section 2.2 will occur when ong¢hefinputs goes to a high-impedance state
rather than an unknown state. Once again, an@sumease match will occur, depending on
the state of the other inputs to tteese statement. However, it is less likely that aystraatch

will occur with acasez statement (floating input or tri-state driven sifrthan with acasex
statement (signal goes unknown briefly), but a pidé problem does exist.

(Old) Guideline : Useasez overcasex , but use it sparingly and cautiously for RTL cagin
since it is possible to match a stray tri-stat@aign thecase expression. In addition to stray
tri-state values on theasez expression causing erroneous matches to occut,hapaens if a
bit in thecase expression goes undefined? This model will nbegeneous matches as with
thecasex , but it can hide X's from propagating. Even aaddifcase item will not always
work to catch and propagate the X’s that occuhecase sel of acasez . SystemVerilog
provides better solutions than just ustagez , as discussed in a later section of this paper.

module mod_23a

(output logic memceO, memcel, cs,
input en,
input [31:30] addr);

always _comb begin
{memce0, memcel, cs} = 3'b0;
casez ({addr, en})
3'b101: memceO = 1'b1;
3'b111: memcel = 1'b1;
3'b0?1:cs =1'bl;
endcase
end
endmodule: mod_23a

Example 2.3a - Casez Address Decoder

2.4 SystemVerilogcase inside *

Thecasex andcasez statements allow the mask bit to be set on eitideraf the compari-
son. In the precedingasex examples, ifaddr, en} has a value d3’bxxx (or3'bzzz),

all bits are masked from the comparison, which redha first branch of the case statement will
be executed. A partial solution to tigistchais to usecasez instead oftasex, as discussed
in the previous section. In the example usedimgfction, if &casez were used, a design

This section is updated from Sutherland/Mills @@otcha paper [7]
Yet Another Latch
SNUG 2012 7 and Gotchas Paper

problem that causes amstruction of 3'bxxx (or even just an X in the left-most bit) will

not be masked, and an invairnstruction will be reported by the default branch (old-
fashioned assertion). However, a design problerincuzses amstruction of 3’bzzz (or
just a Z in the left-most bit) will still be maskeahd an invalidnstruction will not be
trapped.

SystemVerilog offers two solutions to tlgstcha The first solution is a special one-sided, wild-
card comparison operater=? (there is also &7 operator). This wildcard operator works
similarly tocasex , in that bits can be masked from the comparisamgus, Z or ?. However,
the mask bits can only be set on the right-hane sidhe comparison. In the following example,

any X or Z bits innstruction will not be masked, and the invaligstruction will be
trapped:
if (instruction ==? 4h07?7?7?)

opcode = instruction[2:0];
else if ...// decode other valid instructions
else begin
$display (“ERROR: invalid instruction!”);
opcode = 3'bxxXx;
end

Example 2.4a “==?" wildcard comparison operator

A second solution to thigotchais the SystemVerilogase() inside statement. This state-
ment allows mask bits to be used in tase items using X, Z or ?, as wittasex, but
case()inside uses a one-way, asymmetric masking for the comgrar&sny X or Z bits in
thecase expression are not masked. In the following examghy X or Z bits innstruc-

tion will not be masked, and the invalid instructionlve trapped by the default condition:

always _comb begin
case (instruction) inside
4'n0???: opcode = instruction[2:0]; //only test msb bit
4'b1000 : opcode = 3'b001;
... [l decode other valid instructions
default
begin
//synthesis translate_off
$display (‘ERROR: invalid instruction!”);
opcode = 3'bxxx; // propagate the X
//synthesis translate_on
end
endcase
end

Example 2.4b — Case Inside

Yet Another Latch
SNUG 2012 8 and Gotchas Paper

SystemVerilogcase inside will give the functionality otasez orcasex without the er-
roneous matches resulting frarase expression bein¥ or Z (unknown). However, the X
propagation problems can still exist withse inside, even if there exists@efault case
item to attempt to propagate the X’s. In code gxar2.4b, when the instruction value is
4’b0x01, the X will not propagate. Whether the dtters in this case can be questioned, be-
cause the matchintpse item declares that since the msb is 0, the otireetbits are “don’t
cares”. This question is relative to specific dasi

2.5 The Assertive Solution

This solution for dealing witbase/casez/casex unknowncase expressions is similar to
usingcase inside . This approach monitors tlsase expression for the error condition us-
ing an assertion statement immediately precediagdbe statement. Wherease inside

still allows thecase expression to be unknown, it does not “wild cavd’thecase expression
when X or Z. The assertion solution proposed kgltenonitor thecase expression and assert
an error when thease expression is unknown. One might question, oheedse expression
is asserted as unknown, if there is still a negu¢pagate X's.

Assertions can be disabled during resets, or ar dittmes during simulation, as needed. Also,
the severity level can be adjusted between warmngy or fatal, as desired. Whenpase
statement covers all the binary conditions and asesssertion as shown below, tasedefault
may no longer be needed to propagate X's throughabkestatement as was done in example
2.1c. Thecaseitems can still use the X’s as “don’t cares” $anulation and synthesis model-
ing. Since assertions will trap all occurrencegmwthecaseexpression goes to X or Z, it no
longer matters whetheasexor casezare used. Both become safe constructs.

In code example 2.5a, the same code from exampbeiused, but with the assertion added, to
monitor for unknowns in thease expression.

module mod_25a

(input a,b,c,d,
input [1:0] sel,
output logic out);

always_comb begin
assert (!$isunknown(sel))

else $error(“%m : case_Sel = X*);
case (sel)

2'b00 : out = a;

2'b01 : out = b;

2'b10 : out =¢;

2'bl1l :out=d;
endcase

end

endmodule :mod_25a
Example 2.5a case with assert

Yet Another Latch
SNUG 2012 9 and Gotchas Paper

In code example 2.5b,casex is used with an assertion.

module mod_25b

(output logic memce0, memcel, cs,
input en,
input [31:30] addr);

always_comb begin
{memce0, memcel, cs} = 3'b0;
assert (!$isunknown({addr,en}))
else $error(“%m : case_Sel = X");
casex ({addr, en})
3'b101: memceO = 1'b1;
3'b111: memcel = 1'b1;
3'b0?1:cs =1'bl;
endcase
end
endmodule :mod_25b

Example 2.5b - Casex Address Decoder

Using the assertion before tbase statement, as in example 2.5b, is preferred ocasa de-
fault forcasez andcasex because an unknovaase expression might not take tde-
fault branch.

In code example 2.5c, an assertion is placed icdse default replacing thesdisplay
statement in the code example from 2.4b. In thde¢the assertion is present and the X is also
propagated.

always _comb begin
case (instruction) inside
c0???: opcode = instruction[2:0]; //only test msb bit
4'b1000 : opcode = 3'b001;
... Il decode other valid instructions
default
begin
assert (Minstruction}!== 1'bx);
else $error(“case_Sel = X);
opcode = ‘X;
endcase
end

Example 2.5¢c — Case Inside

Yet Another Latch
SNUG 2012 10 and Gotchas Paper

The author recommends using assertions prior toake statement to monitor all
case/casez/casex/case inside statements for unknowease expression values.
Assertions can be disabled as a whole or indivigusb designers will not get false negatives
during reset or coming out of low-power modes. ek8sns are automatically ignored by syn-
thesis; therefore, designers will not need to &ddeitratranslate off/translate_on

lines. Note that with the assertion precedingctiee statements to trapse expression un-
knowns, there is very little difference betweend¢hsex andcasez .

With case inside available now, the old recommendation to cagez overcasex should
now be rescinded. The new SystemVeritage inside replaces botbasez andcasex

and provides functionality that matches the synthe®del. As noted in the previous paragraph,
case inside case statements should be preceded by an asdertiwonitor for unknown bit

in the case expression.

2.6 The Conditional Operator “?: ” Option

An approach many designers use, with the interdgfg@ropagating alX’s, is to use the condi-
tional (commonly referred to as the ternary) opmrédr conditional combinational logic. The
belief is that if the condition expression for thygerator isX, the?: operator will always output
an X. This is not always true under all conditiol®onsider the following code snippet:

logic [3:0] out, dataO, datal,;
logic sel,

always _comb
out = sel ?datal : dataO;

Example 2.6a — Conditional Operator

In this code, there are three possible outcomestbas the value of sel.

1. whensel ==1b0 , out is assigneddata0
2. whensel ==1'b1 , out is assigneddatal
3. whencc or
sel ==1'bZ , the simulator will test each bit position oéttwo data words.

When the bits match in value, that bit value wdkp on to the output. When the bits differ, an
X will be assigned, as shown in line three of tH¥ang table:

sel datal data0O out
4'b0 4'b1100 4'b0101 4'b0101
4'bl 4'b1100 4'b0101 4'b1100
4'bX 4bl xx0 4bl zz0 4bl xxO0
4'bX 4'b1100 4'b1100 4'b 1100

Yet Another Latch
SNUG 2012 11 and Gotchas Paper

In the third test abovegel == 1'bX and some of theut bits are assigned .
However, in the fourth test, where agaagl == 1'bX , out is “known” and theXin sel
iS not propagated.

Therefore, even with the conditional operator,ramediate assertion should be used to monitor
for X's.

logic [3:0] out, dataO, datal;
logic sel,

always _comb begin
assert ("{sel}!== 1'bx);
else $error(“%m sel = X“, $time);
out = sel ?datal: dataO;
end

Example 2.6b — Conditional Operator with immediadssertion

3.0 Synthesis Case Directives History

In the early days of synthesis, Synopsys definedsynthesis directives callédll_case
andparallel_case . The company widely encouraged the use of thesetives for all case
statements because they could, in some cases,arddsgn smaller and faster. The problem is
that this optimization often changed the desigartancorrect design. Many papehsave been
written regarding the correct usagefuif case andparallel_case . The following
sections briefly review and describe the issueh thieése directives. Section 4.0 will provide
SystemVerilog 2005 [5] enhancements and Systend(eB009 [2] updates.

3.1 Synthesis Directivdull_case

Using the synthesis tool directill_case gives more information about the design to the
synthesis tool than is provided to the simulatmol.t This particular directive is used to inform

the synthesis tool that tliase statement is fully defined, and that the outpstgrsnents for all
unused cases are “don't cares”. The functionbetyeen pre- and post-synthesized designs may
or may not remain the same when using this directiv

In code example 3.1a,case statement is coded without using any synthesectiires. The
resultant design is a decoder built from 3-inaMDgates and inverters. The pre- and post-
synthesis simulations will match.

/I no full_case

/I Decoder built from four 3-input AND gates
/I and two inverters

module mod_3la

2 See list of papers in reference section

Yet Another Latch
SNUG 2012 12 and Gotchas Paper

(output logic [3:0]y,
input [1:0] &,
input en);

always_comb begin
y =4'h0; /I latch prevention default assignment
case ({en,a})
3'b1_00: y[a] = 1'b1;
3'bl 01:y[a] =1'bl;
3'bl 10:y[a] = 1'bl;
3'b1l 11:y[a] = 1'b1;
endcase
end
endmodule :mod_31la

Example 3.1a — Decoder with no synthesis directives

Code example 3.1b usesase statement with the synthesis directiué_case . The only
difference between code example 3.1a and 3.1lkeisyhthesis directive. Because of the synthe-
sis directive, then input is optimized away during synthesis anddsfa dangling input. The
pre-synthesis simulator results of the modules foatth examples 3.1a and 3.1b will match the
post-synthesis simulation results of example Jliawill not match the post-synthesis simula-
tion results of example 3.1b

/ full_case applied
/I Decoder built from four 2-input AND gates
/I and two inverters
module mod_31b
(output logic [3:0]y,
input [1:0] &,
input en);

always_comb begin
y = 4'h0; /I latch prevention default assignme nt
case ({en,a}) /I synopsys full_case
3'b1_00: y[a] = 1'b1;
3'b1l_01:y[a] = 1'b1;
3'b1 10:y[a] = 1'b1;
3'bl 11:y[a] = 1'b1;
endcase
end
endmodule :mod_31b

Example 3.1b — Decoder with synthesis directivd faase

The synthesis result from the example 3.1b is adet synthesized into four 2-inpNORgates
and two inverters. The enable input is left unused was optimized away. The full_case treats

Yet Another Latch
SNUG 2012 13 and Gotchas Paper

thecase items as entries to a Karnaugh map. All non-d@ebtase item conditions are con-
sidered as “don’t care” in the Karnaugh map. Sereés set for the foucase items listed and
is a “don’t care” for the remaining conditions doehe full_case pragma, it is optimized away.
Bummer!

As widely defined in previous papers [1] [4] on Bysis directives, the guideline is to only use
thefull_case directive with the inverse-case statement onezbding style.

/l full_case applied to one-hot state machine
logic [3:0] state, next_state;

always_comb begin //next state logic decode
next_state =’0; // latch prevention
case (1'bl) /I synopsys full_case
state[0]: next_state[1] = 1'b1;
state[1]: next_state[2] = 1'b1;
state[2]: next_state[3] = 1'b1;
state[3]: next_state[0] = 1'b1;
endcase
end

Example 3.1c — Best Practice use of synthesis divecfull _case

3.2 Synthesis Directiveparallel _case

Using the synthesis tool directiparallel_case also gives more information about the de-
sign to the synthesis tool than is provided todineulation tool. This particular directive is used
to inform the synthesis tool that all cases shdeadested in parallel, even if there are overlap-
ping cases which would normally cause a prioritgagter to be inferred. When a design does
have overlapping cases, the functionality between gnd post-synthesis designs will be differ-
ent.

Years ago, when addirgarallel_case was the “in” thing to do, one consultant relatiee t
experience of addingarallel_case to an RTL design to improve optimized area anadpe
The RTL model (behaving like a priority encoder¥ged the test bench, but testing missed that
the gate-level model was implemented as non-pyiparallel logic. Result: the design was
wrong, the simulation/synthesis mismatch was netaliered until ASIC prototypes were deliv-
ered, and the ASIC had to be redesigned at significost in both dollars and schedule. Today,
these types of errors should be found using eqeiva checking tools such as Formality. Better
still is to follow methodologies that guard agaissth modeling problems.

The pre-synthesis simulations for the modules sngXes 3.2a and 3.2b below, as well as the
post-synthesis design of the module in example, 3vRainfer priority encoder functionality.

Yet Another Latch
SNUG 2012 14 and Gotchas Paper

// no parallel_case
/I Priority encoder - 2-input nand gate driving a n
/I inverter (z-output) and also driving a
/I 3-input AND gate (y-output)
module mod_32a
(output logic Y, Z,
input a, b, c, d);

always_comb begin

{y, z} = 2'00;
casez ({a, b, c, d})
4'h11??:z2=1;
4'p??11:y =1,
endcase
end

endmodule :mod_32a

Example 3.2a — Priority Encoder Decoder no syntledirectives

The post-synthesis structure for module in exarB@é will be twoANDgates. The use of the
synthesis tool directivparallel_case will cause priority encoder case statements tiorbe
plemented as parallel logic, causing pre- and pgsthesis simulation mismatches.

/] parallel_case
/Il Priority encoder — (not really)
/I two 2-input AND gates
module mod_32b
(output logic Y, Z,

input a, b, c, d);
always _comb begin
{y. z} = 2'00;
casez ({a, b, c,d}) /I synopsys parallel_case
4'n11??:z = 1;
4'b??11:y =1;
endcase
end

endmodulemod_32b

Example 3.2b — Priority Encoder Decoder synthedigective parallel_case

As widely defined in previous papers [1][4] on dyesis directives, the guideline is to only use
theparallel_case directive with the inverse-case statement onezbding style in conjunc-
tion with full_case

Yet Another Latch
SNUG 2012 15 and Gotchas Paper

/l full_case applied to one-hot state machine
logic [3:0] state, next_state;

always_comb begin //next state logic decode
next_state =’0; // latch prevention assignmen t
case (1'bl) /I synopsys full_case parallel_case
state[0]: next_state[1] = 1'b1;
state[1]: next_state[2] = 1'b1;
state[2]: next_state[3] = 1'b1;
state[3]: next_state[0] = 1'b1;
endcase
end

Example 3.2c — Best Practice use of synthesis dives

4.0 SystemVerilog Enhancements

In an attempt to bring to the simulation environtie same capabilities thfail_case and
parallel_case provide in synthesis, SystemVerilog 2005[3] adtieolcase decision mod-
ifiers. These newase decision modifiers are callgutiority andunique . Both of these
decision modifiers come with built-in assertion ckiag to help prevent unexpected results.
Many papers, such as:

“SystemVerilog Saves the Day—the Evil Twins areasfe‘unique’ and ‘priority’ are the
new Heroe46]

“SystemVerilog’s priority & unique—A Solution to May’s ‘full_case’ & parallel_case’
Evil Twins!'[5]

have been written about these two features, disays®w they improve upon, and are a good
replacement forfull_case/parallel_case . As noted in the conclusions of the Cum-
mings paper [5] and further elaborated previouslihis paper, these decision modifiers still
should be used with caution.

Verilog's if...else andcase statements (includingasez andcasex) have four
gotchas that often result in design problems:
* Not all possible branches need to be specified(mete decisions)
* Redundant (duplicate) decision branches can befiguec
» Software simulation evaluates decisions in the roidied (priority decoding), but the
decision might be able to be evaluated in any ardbardware (parallel decoding).
* X-hiding

Thepriority andunique modifiers eliminate the gotchas listed above wittomplete and
redundant decision statements, and prevent thé@®tommon tsynopsys full_case

Yet Another Latch
SNUG 2012 16 and Gotchas Paper

andparallel_case pragmas. The benefits of thaique andpriority decision modi-
fiers are described in two other SNUG papers [B] [6

There are still some gotchas left hanging aroundnatising these modifiers. First, these modi-
fiers only illuminate, or warn against, some of doaditions that cause latches. Section 4.5 will
show a way to always illuminate latches. Secontljdng is still hanging around. The tech-
niques shown in section 2.5 about using asserindsn the paperBeing Assertive With Your

X" [8] provide methods to trap X’s around all of sigeother features.

4.1 SystemVerilogpriority

Thecase priority decision modifier tells the tools that tbase items must be evaluated
in the order listed, which is already the defanlBystemVerilog. What this decision modifier
really provides is a run-time violation reportlietcase statement is entered and there is no

matching condition.

The most practical usage pfiority case is with inverse-case statements as shown in code
example 4.1a.

always_comb
priority case (1'bl)
state[0]: nextstate = 3'b010;
state[1]: nextstate = 3'b100;
state[2]: nextstate = 3'b001;
endcase

Example 4.1a — priority case

The code example 4.1a above will not give a violatieport if multiple conditions match, i.e.

state === 3’111 . A violation report will occur if there are no tohes, i.estate ===
3’b000 . If there are no matches, then the code is magl@lilatch condition. But what if the
following condition occurs whestate == 3’b000 ?

always_comb

priority case (’b1)
state[0]: nextstatel = 3'b010;
state[1]: nextstate2 = 3'b100;
state[2]: nextstatel = 3'b001,
endcase

Example 4.1b — priority case with latches

In example 4.1b, no violation reports are repovtde state !== 3'b000, yet latches will be
modeled, because all the outputs have not beegnaskfor all the conditions.

One other word of caution regarding the keywquddrity”: a priority case would appear

to imply that the order of a multi-branch decisgtatement will be maintained by synthesis. DC
Yet Another Latch

SNUG 2012 17 and Gotchas Paper

does not do this. DC will still optimizeriority case decision ordering, the same as with a
regularcase decision statement. While gate-level optimizat®@a igood thing, it is gotchaif

the designer is expectingpaority case statement to automatically have the identical pri-
ority decoding logic after synthesis.

4.2 SystemVerilogunique

Theunique case decision modifier tells the tools that tbase items may be evaluated in
parallel and that all the items listed are the cetepset of items to be considered. The tools will
give a violation report if overlappingase items exist. The tools will give a run-time vitéa
report if thecase statement is entered and there are no matdzisg items. This decision
modifier is similar to the combinddll_case/parallel_case synthesis pragmas.

always_comb
unique case (1'bl)
state[0]: nextstate = 3'b010;
state[1]: nextstate = 3'b100;
state[2]: nextstate = 3'b001;
endcase

Example 4.2a — unique case

The code example 4.2a above will give a violatigport if multiple conditions match, i.e.
state === 3'111 . A violation report will also occur if there ane matches, i.estate
=== 3'b000 . Again, what if the following condition occurs?

always_comb
unique case (1'bl)

state[0]: nextstatel = 3'b010;

state[1]: nextstate2 = 3'b100;

state[2]: nextstatel = 3'b001;
endcase

Example 4.2b — unique case with latches

In example 4.2b, if one and only one bitstdite is set when thisase statement is tested, no
violation reports are generated, yet latches v@lhiodeled, because all the outputs have not
been assigned for all the conditions.

4.3 SystemVeriloguniqueO
SystemVerilog 2009[2] addadhiqueO case decision modifier, bringing in one mocase
decision modifier for designers to choose frometihiqueO case decision modifier tells the
tools that theease expression is to only match, at most, case item (no overlappingase
items), but is not required to match arase items. This is different from plaumnique in that
it does not require a match. At first glance, thisy appear to be of no use, but in reality, this
decision modifier allows a latch prevention methHody to be used which was not available

Yet Another Latch
SNUG 2012 18 and Gotchas Paper

previously with just theinique case . The tools will also give a violation reporioverlap-
pingcase items exist. This decision modifier is similartt@parallel _case synthesis
pragma.

always_comb
unique0 case (1'bl)
state[0]: nextstate = 3'b010;
state[1]: nextstate = 3'b100;
state[2]: nextstate = 3'b001;
endcase

Example 4.3a — uniqueO case

The code example 4.3a above will give a violatigport if multiple conditions match, i.e.
state === 3111 , but will not give a violation report if there ane matches, i.estate
=== 3'b000

At the time this paper was written, thei queO construct was not supported by simulation or
synthesis tools tested by the author

4.4 SV 2009 Violation Report

In SystemVerilog 2005, a warning was issued win@ique or priority case conditions
warranted reporting problems such as no matctaisg items. Only warnings were issued be-
cause vendors did not want to report false err8gstemVerilog 2009 replaces this warning
with a “violation report”. A violation report wiltlefault to issuing a warning, but the user can
elevate the reporting of a “violation report” tdhet levels, such as an error.

One side note regarding violation reporting is thattools will make these violations immune to
false reports due to zero-delay glitches in thevactgion.

4.5 Only You Can Prevent Latches!f

Thecase examples discussed thus far in this paper showadus coding tricks and
SystemVerilogcase decision modifiers that help reduce the possybdita combinational logic
case statement inadvertently modeling latches. Irtake examples, the focus is strictly on
thecase item and thease expression matching. Multiple matches infer ptyoencoder be-
havior. No match infers a latch. Novice engineeey jump to the conclusion that all that is
missing to prevent latches then isase itemdefault condition — wrong. Thdefault

does the same addl case orunique , in that it guarantees that a match will always be
made. In factynique will never warn of the no-match condition whenedadilt is present,
since the default will cover all remaining non-sfied decodes of thease expression.

If all thecase items andcase expressions are fully covered, can there stilebehes? Con-
sider the followingcase example:

% See Breksticker [9] for additional details on thitbject
Yet Another Latch
SNUG 2012 19 and Gotchas Paper

always_comb

unique case (sel)
condl: begin
outl = inla;
out2 =in2a;
end

cond2: out2 = in2b;
cond3: outl = inlc;

default
begin
outl =inla;
out2 = in2a;
end
endcase

Example 4.5a — unique case with default and latshe

In code example 4.5a, tlvase is fully defined because of tliefault . Theunique case
would still issue violation reports if there weneetlapping conditions, which do not exist in this
example. Unfortunately, since not all outputsdegned for all the states, latches will also be
inferred. It does not matter that thiefault lists all the outputs, théefault condition will
only be reached when there are no otfasse item matches.

One solution is to assign all outputs within alhddions, as shown in the next code example.

always_comb
unique case (sel)

condl: begin
outl =inla;
out2 = in2a;
end
cond2: begin
outl =inla;
out2 = in2b;
end
conda3: begin
outl = inlc;
out2 = in2a;
end
default
Yet Another Latch
SNUG 2012 20 and Gotchas Paper

begin

outl = inla;
out2 = in2a;
end
endcase

Example 4.5b — unique case with all outputs as®drfor each case item

The approach shown in example 4.5b does work tlwain become very hard to read and main-
tain when there are many outputs from this comimnat block. | have worked with some state
machines that drive ten or more outputs from dat®ding, like in this example. Additionally,
output assignments that are unique from stateate get lost in all the redundant output assign-
ments. Contrast the twadways blocks above. In first example, it is easy to theeunique

output conditions for each decode. In the secaathele, it can be easy to miss differences, and
these examples have only two outputs.

Consider the following code example where outptdalés are placed at the beginning of the
combinationahlways block. Now only the conditions that modify thetial defaults need to
be decoded.

always_comb begin

outl =inla;
out2 = in2a;
case (sel)

cond2: out2 = in2b;
cond3: outl = inlc;
endcase

end

Example 4.5c — case with defaults listed beforeeatatement

This code is very concise and is exactly the sametionality as example 4.5b. This coding
style lists the defaults first, before any condiabif orcase statements. Then it uses the con-
ditional statementsase and/orif to modify the outputs as needed. Only the comatitithat
cause the output to be different from the defailltrveed to be listed.

What happens ifinique is added to the code in example 4.5c, providirgctiecks and viola-
tion reports given by thenique decision modifier?

always_comb begin

outl =inla;
out2 =in2a;
unique case (sel)// bad design — don’t use!!

cond2: out2 = in2b;
cond3: outl = inlc;
endcase

Yet Another Latch
SNUG 2012 21 and Gotchas Paper

end

Example 4.5d — unique case with defaults listeddve case statement

Usingunique with defaults listed outside tloase statement will not synthesize to the same
design as simulated. Thique case in code example 4.5d will synthesize to simiy1
=inlc andout2 =in2b . Wow, talk about logic reduction! This occursaeseaunique
case implies to the synthesis tool that all the comhii cared about are listed in tase
statement and all others are “don’t cares” (likertéaigh map “don’t cares”). Since the defaults
are listed before (and outside) ttese statement, they are ignored by synthesis wineque
case is used.

A better solution would be to use the unique0.sMiil only check for non-overlapping case
items and does not require a matching case iteymth8sis will not logic reduce away the de-
fault outputs with this case decision modifier.

always_comb begin

outl =inla;
out2 =in2a;
unique0 case (sel)// GOOD design

cond2: out2 = in2b;
cond3: outl = inlc;
endcase

end

Example 4.5e — uniqueO case with defaults listexdddre case statement

5.0 Asynchronous Set/Reset Flip-Flop Bug
One of the biggest “ignored” bugs of the Synopsystisesis HDL reader (Presto) is the re-
quired, but functionally incorrect, coding style fisynchronous Set/Reset Flip-Flops (SRFF’s).

/I DFF with asynchronous set and reset
/I required Synopsys coding style for Synthesis
/I This model can fail in simulation
module mod_50a
(output logic q,
input d, clk, rstn, setn);

always_ff ~@(posedge clk or negedge rsthn or negedge setn)

if (frstn) g <= 0; // asynchronous reset
else if (Isetn) q<=1; //asynchronous set
else g<=d,

endmodule:mod_50a

Example 5.0a —synthesizable asynchronous set/rBsdt

Yet Another Latch
SNUG 2012 22 and Gotchas Paper

As a consultant and trainer, | am constantly ashemlt this coding style. When | was a junior
designer, | was under the opinion that if you aseg synchronous design, you should never
need an asynchronous SET/RESET FF. The opiniortv@a®nce you initialized your FF with
either a SET or a RESET, you would not be applyimeggasynchronous SET/RESET signal again
during the simulation. Later in my career, | watkker companies that use an active asynchro-
nous SET/RESET after the initialization phase efshmulation. These devices use an approach
to reconfigure the chip after the chip starts adyivunning. That is, once the initial setup is
complete, the asynchronoreset is applied to the configuration circuit a secoinget During
this secondeset mode, the configuration settings are applied éasynchronous

set /reset inputs to the FF’s in the configuration circuNext thereset is removed, allow-

ing for the asynchronous configuration settingbeé@pplied to the FF's. The FF's with thet

still active should change from theeset state to theiset state at this point. Unfortunately,
the FF model in example 5.0a will hold iesset state until the next clock cycle starts. If the
set is removed before this clock occurs, et value is never registered and the simulation
fails. In an actual FF, this approach works fieeduse theet /reset inputs are true level-
sensitive inputs. But with the SystemVerilog FFd®king restrictions for synthesis, simulation

What if thenegedge condition is removed from the sensitivity list, that the code is sampled
on the trailing edge akset, as well as the leading edge?

// Bad DFF with asynchronous set and reset. This design
/I will not compile from Synopsys, and the desi gn will
/I also not simulate correctly.
module mod_50b
(output logic q,
input d, clk, rstn, setn);

always ff ~@(posedge clk or rstn or setn)

if ('rstn) q <= 0; // asynchronous reset
else if (Isetn) q<=1; //asynchronous set
else g<=d,

endmodule:mod_50b

Example 5.0b —non-synthesizable bad design asynobus set/reset DFF

The code in example 5.0b is non-synthesizable Isectne synthesis reader requires that if one
item in a sensitivity list has an edge specifig@ntall the items in the sensitivity list must have
edges specified. Also, the RTL model does not mtite intended model. Wheneveset or
reset goes from low to high, the block is entered antht@mded clocks could be modeled. As-
sumeclock ,reset , andset are all at a high statdReset then goes low for a while and
then back high. Whereset goes low, thalways block will be entered, angl will be put in

its reset state. However, whegset goes back high, treways block will be entered again,
and thaf condition check will fall through to the finalse test, assigning <=d . In this

Yet Another Latch
SNUG 2012 23 and Gotchas Paper

case, the rising edge mset will cause a false clock to occur, agavill be assigned td er-
roneously.

Over the years, there have been many solution®peapto this problem. One solution de-
scribed by a SNUG paper in 1999[1] recommendedgusim-synthesizabli®rce andre-
lease constructs. Théorce andrelease statements will force a correct pre-synthesis
model to accurately model the post-synthesis model.

/I Good DFF with asynchronous set and reset
/I and self-correcting set-reset assignment
module mod_50c
(output logic q,
input d, clk, rstn, setn);

always @(posedge clk or negedge rstn or negedge setn)
if (rstn) g <=0; // asynchronous rese t
else if (Isetn) g <=1; // asynchronous set

else g<=d;

/] synthesis translate_off

always @(rstn or setn)

if (rstn && !setn) force gq=1;
else release q;
/I synthesis translate_on

endmodule:mod_50c

Example 5.0c — synthesizable DFF with asynchron@met/reset

The solution in example 5.0c works, but is uglyrfmainy reasons. First, in simulation, the sig-
nals are assigned from multiévays blocks, meaning thalways block modeling the
SRFF cannot use the SystemVerildgays ff , eliminating the RTL simulation checks that
are provided bwnlways ff . Second, the use tdrce/release is used to override the real
code. When is the signal assigned from the desigays block and when is it overridden by
theforce/release ? Third, the signals are assigned by both blockimd) non-blocking as-
signment operators. These issues violate RTLyiothesis guidelines, hence thynthesis
translate_off, synthesis translate_on switches.

Consider the following as a cleaner solution. Hakition only uses the originalways

block. Thesynthesis translate off, synthesis translate_on comment
statements are replaced by a compiler directivehvis automatically set when the code is read
by the synthesis tool. The code inside the compilective’ifndef ... ’endif adds a

special sensitivity list entry condition in the s#ivity list.

Yet Another Latch
SNUG 2012 24 and Gotchas Paper

I/ Trigger when rst_n goes high and set_n islow
always ff @(posedge clk
or negedge rst_n
or negedge set n
" ifndef SYNTHESIS
or posedge (rst_n & ~set_n)
© endif

)
if (frst_n) g <="0;
else if (Iset_n)q<="1;
else g<=d;

Example 5.0d — better model of DFF with asynchroreoset/reset that both simulates
and synthesizes correctly

My proposal to Synopsys is to make a special icpatition to Presto to allow/ignore this addi-
tional test in the sensitivity list so that ever ttonditional compilationifdef/ endif or
translate_off/translate_on pragmas could be illuminated.

6.0 Oldlogic Type vs. Newlogic Value Set

In the pre-IEEE SystemVerilog days, SuperLog intictl rash new ideas, laying the foundation
for Verilog enhancements that later, combined Wighilog and other recommendations, became
SystemVerilog. One of the significant SuperLogigie®nhancements, that is now part of Sys-
tem Verilog, is the terrfogic, introduced as a complete replacementégy. SuperLog also
modified the usage fdogic orreg variables such that they could be used anywherieea
could be used, but restricted in that they musy balve a single-source driver. This means that a
designer could use thegic type everywhere in the design, except when a Elgaeamultiple
drivers. This gives us a simplistic, simple typéestion, removing the confusing data type rules
of Verilog. For those designers who have takes déipproach (and there are many), there is a
significant change in the way simulators are treghgi c today. As a support consultant, |
have seen simulation problems resulting from tssie.

The SystemVerilog 2009 standard made a subtle eh@ntpe meaning of the keywonas) ,

logic andbit . Prior to SV-2009, these keywords were considerdae declarations of varia-
bles. In SV-2009, they were changed to be indisatbthelogic value set that either a varia-
ble or net could use. Thegic andreg keywords are synonymous; both indicate a 4-state
kind. Thebit keyword indicates a 2-state kind. Thige net types, and all other net types,
are always a logic (4-state) value set. Some bigrigypes, such as integer, are logic (4-state)
value set, while other variable types, suchyge andint , are bit (2-state) value set. The pure
SystemVerilog declaration of a signal is: type tiaket” size name. For example:

var logic [7:0] a,

wire logic [3:0] b,

Yet Another Latch
SNUG 2012 25 and Gotchas Paper

What gets confusing is that, for backward compkilybibit andlogic can be used without a
type and will infer the SystemVerilog variable tyee . In other words, usingit orlogic
alone infers variables of typar bit orvar logic . Also for backward compatibility, the
net typewire by itself inferswire logic . The typevar is ugly and you will most likely
never see it or use it, with the one exception shbalow.

Until recently, SystemVerilog simulators followdtetSuperLog and IEEE 1800-2005[3] im-
plementation of definingpgic as a variable type everywhere it was used. Imebent im-
plementation of some simulators, the usage dedmibflogic has changed to be compliant
with IEEE 1800-2009[2] standard usilgggic as a value set, rather than a type.

Remember, this discussion applies to those designen are usingpgic as a single source
variable everywhere and only using net types foltirduiven signals. The problem (and this is
significant) is that novlogic will infer a “variable logic” for all usages, exmefor input ports
Under SV-2009 rules, an input port declaredhasit logic infersinput wire logic , not
input var logic . Thisis an important difference! An input ptirat is a net data type can
have multiple drivers, including an internal continis assignment that "back drives" the input
port. An input port that is a variable type istriesed to a single source (driver). Back driving
an input port that is a variable is not allowedesigners who use thegic only implementa-
tion, and waninput ports to be variables, now need to update thesadly verboseput

port declaration. To actually get a variable tygaut port, the designer needs to add the
SystemVerilog variable typear to the input port declaration.

module mod_input
(input logic a, b, // implies net (wire) input port
input var logic c,d, // implies variable input port

YUCK!

Yet Another Latch
SNUG 2012 26 and Gotchas Paper

7.0 Conclusions and Guidelines
This paper discussed and provided solutions t@s#uat designers using SystemVerilog for de-
sign must address, such as:

» Case expression issue frasez andcasex

e Latches generated when usingique case or priority case
* SRFF coding style problems with synthesis

e SystemVerilog 2009 new definition of logic

The SystemVerilogase inside is a good replacement foasez andcasex . Adding an
assertion preceding eachse statementqase orcase inside) to monitor for unknowns in
thecase expression contributes to a very robust desigme dssertions could also illuminate
the need for X propagation through RTL code silheeX’s are now visible.

The old synthesis pragmasdl _case andparallel_case were attempted to be replaced
by SystemVerilogase decision modifiers such amique . The idea was to bring the same
functionality with built-in checks to the simulattirat existed in the synthesis tool. Unfortunate-
ly, thesecase definition modifiers can only help to reduce ueimded latches, they cannot cov-
er all the conditions that cause unintended latcAd® only way to fully prevent unintended
latches in combinational logic blocks is to assegery output for every condition. This can be
done two ways: first, by literally assigning alltputs within the decodes of all the conditions.
This style requires lots of code and much redunglaiitie second, and by far less verbose
method, is to assign all the outputs at the tofn@fcombinational logic block, before any condi-
tional statements. Then, within the conditionatetents, only decode and assign the conditions
that would change the output from the default asaignts previously declared.

The asynchronouset /reset flip-flop model required by synthesis is functiigavrong and
must have a fix applied to make it simulation rightRTL. This must not be ignored.

Finally, the designers who have taken on the modedtyle of declaring all single-driven signals
aslogic types, and strictly useire (ortri) only for multi-driven signals, must now deal
with a change of definition. The usagdadic is the same as before in all cases, except for
moduleinput ports where the default iwire even iflogic is listed. Yuck! Depending
on how pure the designers want to be, if the desite follow the previously stated guideline,
then thenput ports must be declared asr logic . Yuck! Yuck! Yuck! (Let me tell you
what | really think about this.)

Yet Another Latch
SNUG 2012 27 and Gotchas Paper

8.0 References

[1] Don Mills and Clifford Cummings;RTL Coding Styles That Yield Simulation and Syn-
thesis Mismatchesjh SNUG 1999 Proceedings

[2] “IEEE 1800-2009 IEEE Standard SystemVerilog — lgdiHardware Design, Specifi-
cation and Verification LanguageJEEE, New York, NY, 2009. ISBN 978-0-7381-
6129-7.

[3] “IEEE 1800-2005 IEEE Standard SystemVerilog — éwifHardware Design, Specifi-
cation and Verification LanguageJEEE, New York, NY, 2005. ISBN 0-7381-4810-5.

[4] Clifford Cummings,“full_case parallel_case’, the Evil Twins of Vest) Synthesis,”
SNUG Boston, 1999.

[5] Clifford Cummings, SystemVerilog's priority & unigue—A Solution to Meg’s
‘full_case’ & parallel_case’ Evil Twins!,Israel SNUG, 2005

[6] Stuart Sutherland SystemVerilog Saves the Day—the Evil Twins arecbexie
‘unique’ and ‘priority’ are the new HeroesSan Jose SNUG, 2005

[7] Stuart Sutherland and Don MiltsStandard Gotchas, Subtleties in the Verilog and
SystemVerilog Standards That Every Engineer Shéualv,” Boston SNUG, 2006

[8] Don Mills, “Being Assertive With Your X,Boston SNUG 2004

[9] Shalom Bresticker;Just When You Thought It Was Safe to Start Coding
Again...Return of the SystemVerilog Gotchesael SNUG 2009, Boston SNUG 2008

9.0 Acknowledgements

Thanks are in order to those who have helped rethesapaper for accuracy. llana Flyer, Cliff
Cummings, Stuart Sutherland and Bernard Miller harewided enormous technical support in
addition to basic format and grammar checking. nkisao all others who have volunteered and
offered their services to help proofread this paper

10.0 About the Author

Mr. Don Mills has been involved in ASIC design ®r986. During that time, he has worked on
more than 30 ASIC projects. Don started using toprddesign methodology in 1991 (Synopsys
DC 1.2). Don has developed and implemented top-d&®8AC design flows at several compa-
nies.

His specialty is integrating tools and automatimg flow. Don works for Microchip Technology
Inc. as an internal SystemVerilog consultant. Doa member of the IEEE Verilog and System
Verilog committees that are working on languagaessand enhancements. Don has authored
and co-authored numerous papers, suclbgstemVerilog Assertions are for Design Engineers
Too!” and“RTL Coding Styles that Yield Simulation and Sysithi®lismatches”Copies of the-
se papers can be found at www.lcdm-eng.com. MiisMdn be reached at

mills@lcdm-eng.com or don.mills@microchip.com

Yet Another Latch
SNUG 2012 28 and Gotchas Paper

